
v_

BASIC

Fourth Edition

A Manual for BASIC, the elementary

algebraic language designed for use

with the Dartmouth Time Sharing System,

John G. Kemeny
Thomas E. Kurtz

This edition prepared with the
assistance of David Cochran.

1 January 1968

Copyright 19 6 8 by Trustees of
Dartmouth College.

The development of the BASIC
Language has been supported in
part by the National Science
Foundation under the terms of
Grant NSF GE 3864.

Fourth Edition

Dartmouth College

Computation Center

I January 1968

TABLE OF CONTENTS

INTRODUCTION

WHAT IS A PROGRAM ? I

I. A BASIC PRIMER 3

1.1 An example 3

1.2 Formulas XI

1.3 Loops X6

1.4 Lists and Tables 20

1.5 Use of the Time Sharing System 24

1.6 Errors and "Debugging" 28

1.7 Summary of Elementary BASIC Statements 32

1.7.1 LET 32

1.7.2 READ and DATA 33

l r 7.3 PRINT 34

1.7.4 G0 T0 35

1.7.5 IF ... THEN 35

1.7.6 0N . . . G0 T0 36

1.7.7 F0R and NEXT 36

1.7.8 DIM 37

1.7.9 END 37

II. ADVANCED BASIC 38

2.1 More about PRINT 38

2.2 Functions and DEF 42

2.3 G0SUB and RETURN 48

2.4 INPUT 50

2.5 Some Miscellaneous Statements 51

2.6 Matrices 53

2.7 Alphanumeric Information 63

2.8 Error Messages 70

2.9 Limitations on BASIC 74

APPENDICES 77

A Using the Time-Sharing System 77

B Library Files 81

C EDIT 82

D Program Names 83

E Future Plans 8 3

(1) Passwords 83

(2) Background BASIC 83

(3) Data files 83

(4) Chaining of programs 84

(5) Segmenting of programs 8 4

(6) Multiple teletype connections 84

(7) Saving of compiled programs 85

INTRODUCTION

WHAT IS A PROGRAM?

A program is a set of directions, or a recipe, that is

used to tell a computer how to provide an answer to some problem.

It usually starts with the given data as the ingredients,

contains a set of instructions to be performed or carried

out in a certain order, and ends up with a set of answers as

the cake. And, as with ordinary cakes, if you make a mistake

in your program, you will end up with something else—perhaps

hash!

Any program must fulfill two requirements before it can

be carried out. The first is that it must be presented in a

language that is understood by the "computer". If the program

is a set of instructions for solving a system of linear

equations and the "computer" is an English-speaking person,

the program will be presented in some combination of mathemati-

cal notation and English. If the "computer" is a French-

speaking person, the program must be in his language; and if

the "computer" is a high-speed digital computer, the program

must be presented in a language which the computer "understands".

The second requirement for all programs is that they must

be completely and precisely stated. This requirement is crucial

when dealing with a digital computer which has no ability to

infer what you mean — it does what you tell it to do, not

what you meant to tell it.

We are, of course, talking about programs which provide

-1-

numerical answers to numerical problems. It is easy for a

programmer to present a program in the English language, but

such a program poses great difficulties for the computer

because English is rich with ambiguities and redundancies

,

those qualities which make poetry possible but computing

impossible. Instead, you present your program in a language

which resembles ordinary mathematical notation, which has a

simple vocabulary and grammar, and which permits a complete

and precise specification of your program. The language you

will use is BASIC which is, at the same time, precise, simple

and easy to understand.

A first introduction to writing a BASIC program is given

in Chapter I. This chapter includes all that you will need

to know to write a wide variety of useful and interesting

programs. Chapter II deals with more advanced computer

techniques, and the Appendices contain a variety of reference

materials

.

-2-

Chapter I

A BASIC PRIMER

1.1 An Example

The following example is a complete BASIC program for

solving a system of two simultaneous linear equations in two

variables

:

ax + by = c

dx + ey = f

and then solving two different systems, each differing from

this system only in the constants c and f.

You should be able to solve this system, if ae - bd is

not equal to 0, to find that

x = ce - bf and y = af - cd
ae - bd ae - bd.

If ae - bd = 0, there is either no solution or there are

infinitely many, but there is no unique solution. If you

are rusty on solving such systems, take our word for it that

this is correct. For now, we want you to understand the

BASIC program for solving this system.

Study this example carefully— in most cases the purpose

of each line in the program is self-evident—and then read

the commentary and explanation.

-3-

10 READ A, B, D, E
15 LET G=A*E-B*D
20 IF G = THEN 65
30 READ C, F
37 LET X = (C*E - B*F) / G
42 LET Y = (A*F - C*D) / G
55 PRINT X, Y
60 G0 T0 30
6 5 PRINT "N0 UNIQUE S0LUTI0N"
70 DATA 1, 2, 4

80 DATA 2, -7, 5

85 DATA 1, 3, 4, -7
90 END

We immediately observe several things about this sample

program. First, we see that the program uses only capital

letters, since the teletype has only capital letters. And

we see that the letter "oh" is distinguished from the numeral

"zero" by having a diagonal slash through the "oh". We make

the distinction since, in a computer program, it is not

always possible to tell from the context whether the letter or

the numeral was intended, unless they have a different

appearance. This distinction is made automatically while

typing, since the teletype has one key for "oh" and another

for "zero"; and one key for "one", another for "eye", and no

key for the lower case "el"

.

A second observation is that each line of the program

begins with a number. These numbers are called line numbers

and serve to identify the lines, each of which is called a

statement . Thus , a program is made up of statements , most of

which are instructions to the computer. Line numbers also

serve to specify the order in which the statements are to be

performed by the computer. This means that you may type your

program in any order. Before the program is run, the computer

sorts out and edits the program, putting the statements into

-4-

the order specified by their line numbers. (This editing

process facilitates the correcting and changing of programs

,

as we shall explain later.)

A third observation is that each statement starts , after

its line number, with an English word. This word denotes

the type of the statement. There are several types of state-

ments in BASIC, nine of which are discussed in this chapter.

Seven of these nine appear in the sample program of this

section.

A fourth observation, not at all obvious from the program,

is that spaces have no significance in BASIC, except in

messages which are to be printed out, as in line number 65

above. Thus, spaces may be used, or not used, at will to

"pretty up" a program and make it more readable. Statement

10 could have been typed as 10READA,B ,D ,E and statement 15 as

15LETG=A*E-B*D.

With this preface, let us go through the example, step

by step. The first statement, 10, is a READ statement. It

must be accompanied by one or more DATA statements. When the

computer encounters a READ statement while executing your

program, it will cause the variables listed after the READ

to be given values according to the next available numbers in

the DATA statements. In the example, we read A in statement

10 and assign the value 1 to it from statement 70 and,

similarly with B and 2, and with D and 4. At this point,

we have exhausted the available data in statement 70 , but

there is more in statement 80, and we pick up from it the

-5-

the number 2 to be assigned to E.

We next go to statement 15, which is a LET statement,

and first encounter a formula to be evaluated. (The asterisk

"*" is obviously used to denote multiplication.) In this

statement we direct the computer to compute the value of

AE - BD, and to call the result G. In general, a LET state-

ment directs the computer to set a variable equal to the

formula on the right side of the equals sign. We know that

if G is equal to zero, the system has no unique solution.

Therefore, we next ask, in line 20, if G is equal to zero. If

the computer discovers a "yes" answer to the question, it is

directed to go to line 65, where it prints "N0 UNIQUE

S0LUTION". From this point, it would go to the next state-

ment. But lines 70, 80, and 85 give it no instructions,

since DATA statements are not "executed" , and it then goes

to line 90 which tells it to "END" the program.

If the answer to the question "Is G equal to zero?" is

"no", as it is in this example, the computer goes on to the

next statement, in this case 30. (Thus, an IF-THEN tells the

computer where to go if the "IF" condition is met, but to

go on to the next statement if it is not met.) The computer

is now directed to read the next two entries from the DATA

statements, -7 and 5, (both are in statement 80) and to assign

them to C and F respectively. The computer is now ready to

solve the system

x + 2y = -7

4x + 2y = 5.

-6-

In statements 3 7 and 42, we direct the computer to

compute the value of X and Y according to the formulas provided.

Note that we must use parentheses to indicate that CE - BF is

divided by G; without parentheses, only BF would be divided

BF
by G and the computer would let X = CE - —

G

The computer is told to print the two values computed,

that of X and that of Y, in line 55. Having done this, it

moves on to line 60 where it is directed back to line 30. If

there are additional numbers in the DATA statements, as there

are here in 85, the computer is told in line 30 to take the

next one and assign it to C, and the one after that to F.

Thus, the computer is now ready to solve the system

x + 2y = 1

4x + 2y = 3.

As before, it finds the solution in 37 and 42 and prints

them out in 55, and then is directed in 60 to go back to 30.

In line 30 the computer reads two more values, 4 and -7,

which it finds in line 85. It then proceeds to solve the

system
x + 2y = 4

4x + 2y = -7

and to print out the solutions. It is directed back again to

30, but there are no more pairs of numbers available for C

and F in the DATA statements. The computer then informs you

that it is out of data, printing on the paper in your teletype

"0UT 0F DATA IN 3 0" and stops.

For a moment, let us look at the importance of the

-7-

various statements. For example, what would have happened if

we had omitted line number 55? The answer is simple: the

computer would have solved the three systems and theatold us

when it was out of data. However, since it was not asked to

tell us (PRINT) its answers, it would not do it, and the

solutions would be the computer's secret. What would have

happened if we had left out line 20? In this problem just

solved nothing would have happened. But, if G were equal

to zero, we would have set the computer the impossible task

of dividing by zero in 37 and 42, and it would tell us so

emphatically, printing "DIVISI0N BY ZER0 IN 37" and "DIVISI0N

BY ZER0 IN 42". Had we left out statement 60, the computer

would have solved the first system, printed out the values

of X and Y, and then gone on to line 6 5 where it would be

directed to print "N0 UNIQUE S0LUTI0N". It would do this and

then stop.

One very natural question arises from the seemingly

arbitrary numbering of the statements : why this selection of

line numbers? The answer is that the particular choice of

line numbers is arbitrary, as long as the statements are

numbered in the order which we want the machine to follow in

executing the program. We could have numbered the statements

1, 2, 3, ..., 13, although we do not recommend this numbering.

We would normally number the statements 10, 20, 30, ..., 130.

We put the numbers such a distance apart so that we can later

insert additional statements if we find that we have forgotten

them in writing the program originally. Thus, if we find that

we have left out two statements between those numbered 40 and

50, we can give them any two numbers between 40 and 50— say

44 and 46; and in the editing and sorting process, the computer

will put them in their proper place.

Another question arises from the seemingly arbitrary

placing of the elements of data in the DATA statements: why

place them as they have been in the sample program? Here again

the choice is arbitrary and we need only put the numbers in

the order that we want them read (the first for A, the second

for B, the third for D, the fourth for E, the fifth for C, the

sixth for F, the seventh for the next C, etc.) In place of

the three statements numbered 70, 80, and 85, we could have

put
75 DATA 1, 2, 4, 2, -7, 5, 1, 3, 4, -7

or we could have written, perhaps more naturally,

70 DATA 1, 2, 4, 2

75 DATA -7, 5
80 DATA 1, 3

85 DATA 4, -7

to indicate that the coefficients appear in the first data

statement and the various pairs of right-hand constants appear

in the subsequent statements.

The program and the resulting run is shown below exactly

as it appears on the teletype .

-9-

10 READ A, B, D, E
15 LET G=A*E-B*D
20 IF G = THEM 65
30 READ C, F
37 LET X = (C*E-B*F>/G
42LETY=(A*F-C*D)/G
55 PRINT X, Y
60 G0 T0 30
65 PRINT W

N0 UNIQUE S0LUTI0N"
70 DATA 1, 2, 4

80 DATA 2, -7, 5

85 DATA 1, 3, 4, -7
90 END
RUN

LINEAR 11:03 10/19/67

4 -5.5
0.666667 0.166667
-3.66667 3.83333
0UT 0F DATA IN 30

TIME: .10 SECS.

After typing the program, we type RUN followed by a

carriage return. Up to this point the computer stores the

program and does nothing with it. It is this command which

directs the computer to execute your program.

Note that the computer, before printing out the answers,

printed the name which we gave to the problem (LINEAR) and

the time and date of the computation. At the end of the

printed answers the machine tells us the amount of computing

time used in our problem. The message "0UT 0F pATA IN 30"

here may be ignored. However, in some cases it indicates an

error in the program: for more details see Sec. 1.7.2.

-10-

1. 2 Formulas

The computer can perform a great many operations; it can

add, subtract, multiply, divide, extract square roots, raise

a number to a power, and find the sine of a number (or an

angle measured in radians) , etc.— and we shall now learn how

to tell the computer to perform these various operations and

to perform them in the order that we want them done.

The computer performs its primary function (that of

computation) by evaluating formulas which are supplied in a

program. These formulas are very similar to those used in

standard mathematical calculation, with the exception that

all BASIC formulas must be written on a single line. Five

arithmetic operations can be used to write a formula, and these

are listed in the following table:

Symbol Example Meaning

Addition (add B to A)

Subtraction (subtract B from A)

Multiplication (multiply B by A)

Division (divide A by B)

Raise to the power (find X2)

We must be careful with parentheses to make sure that

we group together those things which we want together. We

must also understand the order in which the computer does its

work. For example, if we type A + B * cf D r the computer will

first raise C to the power D, multiply this result by B, and

then add A to the resulting product. This is the same con-

vention as is usual for A + B CD . If this is not the order

-11-

+ A + B

- A - B

* A * B

/ A / B

t X f 2

intended, then we must use parentheses to indicate a different

order. For example, if it is the product of B and C that we

want raised to the power D, we must write A + (B * C) 'h D; or,

if we want to multiply A + B by C to the power D, we write

(A + B) * C^D, We could even add A to B , multiply their sum

by C, and raise the product to the power D by writing

((A + B) * C) ^D. The order of priorities is summarized in

the following rules

:

1. The formula inside parentheses is computed before
the parenthesized quantity is used in further
computations.

2. In the absence of parentheses in a formula involving
addition, multiplication, and the raising of a
number to the power, the computer then performs the
multiplication, and the addition comes last.
Division has the same priority as multiplication,
and subtraction the same as addition.

3. In the absence of parentheses in a formula involving
only multiplication and division, the operations
are performed from left to right, even as they
are read. So also does the computer perform
addition and subtraction from left to right.

These rules are illustrated in the previous example. The rules

also tell us that the computer, faced with A - B - C, will

(as usual) subtract B from A and then C from their difference;

faced with A/B/C, it will divide A by B and that quotient by

C. Given A^B^C, the computer will raise the number A to

the power B and take the resulting number and raise it to the

power C. If there is any question in your mind about the

priority, put in more parentheses to eliminate possible

ambiguities

.

In addition to these five arithmetic operations, the

-12-

computer can evaluate several mathematical functions. These

functions are given special 3-letter English names, as the

following list shows:

Functions Interpretation

SIN (X) Find the sine of X "\ x interpreted as

C0S (X) Find the cosine of X (a number, or as

TAN < x) Find the tangent of X /an angle measured

C0T (X) Find the cotangent of X I in radians

ATN (X) Find the arctangent of X

EXP (X) Find ex

L0G (X) Find the natural logarithm of X (In X)

ABS (X) Find the absolute value of X (jx|)

SQR (X) Find the square root of X CVx)

Five other functions are also available in BASIC: INT, RND,

SGN, NUM, and DET; these are reserved for explanation in Chapter

II. In place of X, we may substitute any formula or any

number in parentheses following any of these formulas. For

example, we may ask the computer to find y4 + X 3 by writing

SQR (4 + X^3)
, or the arctangent of 3X - 2ex + 8 by writing

ATN (3 * X - 2 * EXP (X) + 8) .

If, sitting at the teletypewriter, you need the value of

(_)
17 you can write the two-line program

10 PRINT (5/6)>f> 17

20 END

and the computer will find the decimal form of this number

and print it out in less time than it took you to type the

program.

-13-

Since we have mentioned numbers and variables, we

should be sure that we understand how to write numbers for

the computer and whet variables are allowed. A number may

be positive or negative and it may contain up to nine digits,

but it must be expressed in decimal form. For example, all

of the following are numbers in BASIC: 2, -3.675, 12^456789,

-.987654321, and 483.4156. The following are not numbers

in BASIC: 14/3, fT and .00123456789. The first two are

formulas but not numbers, and the last one has more than

nine digits. We may ask the computer to find the decimal

expansion of 14/3 or /fl , and to do something with the

resulting number, but we may not include either in a list of

DATA. We gain further flexibility by use of the letter E,

which stands for "times ten to the power". Thus, we may

write .00123456789 in a form acceptable to the computer in

any of several forms: . 123456789E-2 or 123456789E-11 or

1234.56 789E-6. We may write ten million as 1E7 (or IE + 7)

and 1965 as 1.965E3 (or 1.965E +3). We do not write E7

as a number, but must write IE 7 to indicate that it is 1

that is multiplied by 10 7
.

A numerical variable in BASIC is denoted by any letter,

or by any letter followed by a single digit*. Thus, the

computer will interpret E7 as a variable, along with A, X,

N5, 10, and 01. A variable in BASIC stands for a number,

usually one that is not known to the programmer at the time

* In this chapter we will discuss only numerical variables.
See Section 2.7 for alphanumeric "string variables".

-14-

the program was written. Variables are given or assigned

values by LET and READ statements. The value so assigned

will not change until the next time a LET or READ statement

is encountered with a value for that variable. However,

all variables are set equal to before a RUN. Thus, it is

only necessary to assign a value to a variable when a value

other than is required.

Although the computer does little in the way of

"correcting", during computation, it will sometimes help

you when you forget to indicate absolute value. For example,

if you ask for the square root of -7 or the logarithm of

-5, the computer will give you the square root of 7 with

the error message that you have asked for the square root of

a negative number, or the logarithm of 5 with the error

message that you have asked for the logarithm of a negative

number.

Six other mathematical symbols are provided for in BASIC,

symbols of relation, and these are used in IF-THEN statements

where it is necessary to compare values. An example of the

use of these relation symbols was given in the sample program

in Section 1.

•15-

Symbol Example

- A = B

< A < B

<= A <=B

> A > B

> = A>=B

<> a O b

Any of the following six standard relations may be used:

Meaning

Is equal to (A is equal to B)

Is less than (A is less than B)

Is less than or equal to
(A is less than or equal to B)

Is greater than (A is greater
than B)

Is greater than or equal to
(A is greater than or equal to B)

Is not equal to (A is not equal
to B)

1. 3 Loops

We are frequently interested in writing a program in

which one or more portions are performed not just once but

a number of times, perhaps with slight changes each time.

In order to write the simplest program, the one in which this

portion to be repeated is written just once, we use the

programming device known as a loop .

The programs which use loops can, perhaps, be best

illustrated and explained by two programs for the simple task

of printing out a table of the first 100 positive integers

together with the square root of each. Without a loop, our

program would be 101 lines long and read:

10 PRINT 1, SQR (1)
20 PRINT 2, SQR (2)
30 PRINT 3, SQR (3)

990 PRINT 99, SQR (99)
1000 PRINT 100, SQR (100)
1010 END

-16-

With the following program, using one type of loop, we

can obtain the same table with far fewer lines of instruction,

5 instead of 101:

10 LET X = 1

20 PRINT X, SQR (X)

30 LET X = X + 1
40 IF X<= 100 THEN 20
50 END

Statement 10 gives the value of 1 to X and "initializes"

the loop. In line 20 both 1 and its square root are printed.

Then, in line 30, X is increased by 1, to 2. Line 40 asks

whether X is less than or equal to 100; an affirmative answer

directs the computer back to line 20. Here it prints 2 and

/
\2 , and goes to 30. Again X is increased by 1, this time to

3, and at 40 it goes back to 20. This process is repeated

—

line 20 (print 3 and TV , line 30 (X = 4), line 40 (since

4 < 100 go back to line 20), etc.— until the loop has been

traversed 100 times. Then, after it has printed 100 and its

square root, X becomes 101. The computer now receives a

negative answer to the question in line 40 (X is greater than

100, not less than or equal to it) , does not return to 20 but

moves on to line 50, and ends the program. All loops contain

four characteristics; initialization (line 10), the body

(line 20) , modification (line 30) , and an exit test (line 40)

.

Because loops are so important and because loops of the type

just illustrated arise so often, BASIC provides two statements

to specify a loop even more simply. They are the F0R and NEXT

statements
/
and their use is illustrated in the program:

17-

10 F0R X = 1 T0 100
20 PRINT X, SQR (X)
30 NEXT X
50 END

In line 10, X is set equal to 1, and a test is set up,

like that of line 40 above. Line 30 carries out two tasks:

X is increased by 1, and the test is carried out to deter-

mine whether to go back to 20 or go on. Thus lines 10 and

30 take the place of lines 10, 30, and 40 in the previous

program— and they are easier to use.

Note that the value of X is increased by 1 each time

we go through the loop. If we wanted a different increase,

we could specify it by writing

10 F0R X = 1 T0 100 STEP 5

and the computer would assign 1 to X on the first time

through the loop, 6 to X on the second time through, 11

on the third time, and 96 on the last time. Another step

of 5 would take X beyond 100, so the program would proceed

to the end after printing 96 and its square root. The STEP

may be positive or negative, and we could have obtained the

first table, printed in reverse order, by writing line 10

as

10 F0R X = 100 T<6 1 STEP -1

In the absence of a STEP instruction, a step size of +1 is

assumed.

-18-

More complicated F0R statements are allowed. The

initial value, the final value, and the step size may all

be formulas of any complexity. For example, if N and Z have

been specified earlier in the program, we could write

F0R X = N + 7*Z T0 (Z-N)/3 STEP (N-4*Z)/10

For a positive step-size, the loop continues as long

as the control variable is less than or equal to the final

value. For a negative step-size, the loop continues as long

as the control variable is greater than or equal to the

final value.

If the initial value is greater than the final value

(less than for negative step-size) , then the body of the

loop will not be performed at all, but the computer will

immediately pass to the statement following the NEXT. As

an example, the following program for adding up the first

n integers will give the correct result when n is 0.

10 READ N
20 LET S =
30 F0R K = 1 T0 N
40 LET S = S + K
50 NEXT K
60 PRINT S
70 G0 T0 10
9 DATA 3, 10,
99 END

-19-

It is often useful to have loops within loops. These

are called nested loops and can be expressed with F0R and NEXT

statements. However, they must actually be nested and must

not cross, as the following skeleton examples illustrate:

Allowed

—F0R X

I

—F0R Y

-NEXT Y

-NEXT X

Not Allowed

-F0R X

-F0R Y

1—NEXT X

-NEXT Y

Allowed

_ •crXD v

V(AT! V

— F0R Z

—NEXT Z

r—F0R W

—NEXT W

NEXT Y

— F0R Z

— NEXT Z

NEXT X

1. 4 Lists and Tables

In addition to the ordinary variables used by BASIC, there

are variables which can be used to designate the elements of

a list or of a table. These are used where we might ordinarily

use a subscript or a double subscript, for example the coef-

ficients of a polynomial (a
Q

, a-^ , a
2 , . • .) or the elements of

a matrix (b. .) . The variables which we use in BASIC consist

-20-

of a single letter, which we call the name of the list,

followed by the subscripts in parentheses. Thus, we might

write A(0) , A(i), A(2) , etc. for the coefficients of the

polynomial and B(l,l), B(l,2), etc. for the elements of the

matrix.

We can enter the list A(0) , A(l) , . . . A(10) into a program

very simply by the lines

:

10 F0R I = T0 10

20 READ A(I)
30 NEXT I

A _

40 DATA 2, 3, -5, 5, 2.2, 4, -9, 123, 4, -4, 3

We need no special instruction to the computer if no subscript

greater than 10 occurs. However, if we want larger subscripts,

we must use a DIM statement, to indicate to the computer that

it has to save extra space for the list or table. When in

doubt, indicate a larger dimension than you expect to use.

For example, if we want a list of 15 numbers entered, we might

write

:

10 DIM A(25)
20 READ N
30 F0R I = 1 TSZ? N
40 READ A (I)

50 NEXT I

60 DATA 15
70 DATA 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47

Statements 20 and 60 could have been eliminated by writing

30 as F0R I = 1 T0 15, but the form as typed would allow for

the lengthening of the list by changing only statement 60,

so long as it did not exceed 25.

We would enter a 3x5 table into a program by writing:

-21-

10 FOR I = 1 TO 3

20 FOR J = 1 TO 5

30 READ B (I, J)
40 NEXT J
50 NEXT I

60 DATA 2, 3, -5, -9, 2

70 DATA 4, -7, 3, 4, -2

80 DATA 3, -3, 5, 7, 8

Here again, we may enter a table with no dimension statement,

and it will handle all the entries from B(0,0) to B(:j,10).

If you try to enter a table with a subscript greater than 10,

without a DIM statement, you will get an error message telling

you that you have a subscript error. This is easily rectified

by entering the line:

5 DIM B(20,30)

if, for instance, we need a 20-by-30 table.

The single letter denoting a list or a table name may

also be used to denote a simple variable without confusion.

However, the same letter may not be used to denote both a list

and a table in the same program. The form of the subscript

is quite flexible, and you might have the list item B(I+K)

or the table items B(I,K) or Q(A(3,7), B - C) .

On the next page is a list and run of a problem which

uses both a list and a table. The program computes the total

sales of each of five salesmen, all of whom sell the same

three products. The list P gives the price/item of the three

products and the table S tells how many items of each product

each man sold. You can see from the program that product no.l

sells for $1.25 per item, no. 2 for $4.30 per item, and no.

3

for $2.50 per item; and also that salesman no. 1 sold 40 items

of the first product, 10 of the second, and 35 of the third,

-22-

and so on. The program reads in the price list in lines

40-80, using data in lines 910-930. The same program could

be used again, modifying only line 900 if the prices change,

and only lines 910-9 30 to enter the sales in another month.

This sample program did not need a dimension statement,

since the computer automatically saves enough space to allow

all subscripts to run from to 10. A DIM statement is

normally used to save more space. But in a long program,

requiring many small tables, DIM may be used to save less

space for tables, in order to leave more for the program.

Since a DIM statement is not executed, it may be entered

into the program on any line before END; it is convenient,

however, to place DIM statements near the beginning of the

program.

SALES1 11:05 10/20/67

10 F0R I : 1 T0 3

20 READ PC I)

30 NEXT I

40 F0R I = 1 T0 3

50 F0R J = 1 T0 5

SO READ SCI, J)
70 NEXT J

80 NEXT I

90 F0R J = 1 T0 5

100 LET S -

110 F0R I = 1 T0 3
120 LET S = S + PCI)*SCI,J)
130 NEXT I

140 PRINT "T0TAL SALES F0R SALESMAN "J, " $" S
150 NEXT J
900 DATA 1 .25, 4.30, 2.50
910 DATA 40, 20, 37, 29, 42
920 DATA 10, 16, 3, 21 , 8
930 DATA 35, 47, 29, 16, 33
999 END

-23-

READY

RUN

SALES1 11:06 10/20/S7

T0TAL SALES FOR SALESMAN 1 S 180.5
T0TAL SALES F0R SALESMAN 2 £ 211.3
T0TAL SALES F0R SALESMAN 3 $ 131.65
T0TAL SALES F0R SALESMAN A % 166.55
T0TAL SALES F0R SALESMAN 5 $169.4

TIME: .09 SECS.

1. 5 Use of the Time-Sharing System

Now that we know something about writing a program in

BASIC, how do we set aoout using a teletype to type in our

program and then to have the computer solve our problem?

There are more details of the Time-Sharing System in

Appendix A, but we shall learn enough in this section to

handle a simple problem. To connect a teletype, wnich is

equipped with a standard receiver on the right side, to the

computer the following steps must be followed.

(1) lift receiver and wait for dial tone

(2) dial number (which should be posted prominently
nearby)

(3) when ringing changes to high-pitched tone push the
button labeled ORIG.

To connect a direct-line teletype which has no receiver it is

only necessary to push the ORIG. button.

If the teletype is already connected and was being used

by someone else you should type HELL0 and then push the key

marked RETURN.

After any of the above procedures has been completed the

computer will start typing and will then ask for your USER

-24-

NUMBER— . You are to type in your personal user number, for

Dartmouth students the six digit student I. D. number, and

again push the key marked RETURN. (You must, in fact, push

the RETURN key after typing any line - only then does the line

enter the computer.) Persons other than Dartmouth students can

learn their user number from the Kiewit Computation Center.

The computer then types NEW 0R 0LD — and you type the

appropriate adjective: NEW if you are about to type a new

problem and 0LD if you want to recover a problem on which you

have been working earlier and have stored in the computer's

memory.

The computer then asks NEW FILE NAME— (or 0LD FILE NAME,

as the case may be) and you type any combination of letters and

digits you like , but no more than eight. In the sample

problem preceding you will remember that we named it SALES1. If

you are recalling an old problem from the computer's memory,

you must use exactly the same name as that which you gave the

problem before you asked the computer to save it.

The computer then types READY and you should begin to type

your program. Make sure that each line begins with a line

number which contains no more than five digits and contains no

spaces or non-digit characters. Also be sure to start at the

very beginning of a line and to press the RETURN key at the

completion of each line.

If, in the process of typing a statement, you make a

typing error and notice it immediately, you can correct it by

* Some characters other than letters and digits are allowed in
program names, but care is needed with certain ones. See
Appendix D.

-25-

r

you can type ST0P and the computation will cease. (If the

teletype is actually typing, there is an express stop — just

press the "S" key.) It will then type READY and you can start

to make your corrections. If you are in serious trouble, the

combination CTRL - SHIFT - P will always give you a new start.

(Hold down the CTRL and SHIFT keys with your left hand, and

push P with your right hand.)

After you have all of the information you want, and are

ready to leave the teletype, you should type G00DBYE (or even

BYE) . The computer then types the time, and moves up your

paper for ease in tearing off.

A sample use of the time-sharing system is shown below.

GE 600-LINE T/S FR0M DARTM0UTH
TERMINAL 138 0N AT 11:13 10/20/67
USER NUMBER--123456
NEW 0R 0LD--NEW
NEW FILE NAME-- SAMPLE
READY
10 F0R N = 1 T0 7

20 PRINT N,SQR(N)
30 NEXT N

40 PRINT "D0NE"
50 END
RUN

SAMPLE 11:14 10/20/67

1 1

2 1.41421
3 1.73205
4 2
5 2.23607
6 2.44949
7 2.64575

D0NE

TIME: .07 SECS.

BYE
*** 0FF AT 11:14 HAN0VER 10/20/67

-27-

1.6 Errors and "Debugging "

It may occasionally happen that the first run of a new

problem will be free of errors and give the correct answers.

But it is much more common that errors will be present and will

have to be corrected. Errors are of two types: errors of form

(or grammatical errors) which prevent the running of the program;

and logical errors in the program which cause the computer to

produce wrong answers or no answers at all.

Errors of form will cause error messages to be printed,

and the various types of error messages are listed and explained

in Sec. 2.8. Logical errors are often much harder to uncover,

particularly when the program gives answers which seem to be

nearly correct. In either case, after the errors are discovered,

they can be corrected by changing lines, by inserting new lines,

or by deleting lines from the program. As indicated in the

last section, a line is changed by typing it correctly with

the same line number; a line is inserted by typing it with a

line number between those of two existing lines; and a line is

deleted by typing its line number and pressing the RETURN key.

Notice that you can insert a line only if the original line

numbers are not consecutive integers. For this reason, most

programmers will start out using line numbers that are mult-

ples of five or ten, but that is a matter of choice.

These corrections can be made at any time—whenever you

notice them--either before or after a run. Since the computer

sorts lines out and arranges them in order, a line may be

retyped out of sequence. Simply retype the offending line with

-28-

its original line number.

As with most problems in computing, we can best illustrate

the process of finding the errors (or "bugs") in a program, and

correcting (or "debugging") it, by an example. Let us consider

the problem of finding that value of X between and 3 for

which the sine of X is a maximum, and ask the machine to print

out this value of X and the value of its sine. If you have

studied trigonometry, you know that "Tf/2 is the correct value;

but we shall use the computer to test successive values of X

from to 3, first using intervals of .1, then of .01, and

finally of .001. Thus, we shall ask the computer to find the

sine of 0, of .1, of .2, of. 3..., of 2.8, of 2.9, and of 3, and

to determine which of these 31 values is the largest. It will

do it by testing SIN(O) and SIN(.l) to see which is larger,

and calling the larger of these two numbers M. Then it will

pick the larger of M and SIN (.2) and call it M. This number

will be checked against SIN (.3), and so on down the line.

Each time a larger value of M is found, the value of X is

"remembered" in X0 . When it finishes, M will have been

assigned to the largest value. It will then repeat the search,

this time checking the 301 numbers 0, .01, .02, .03,..., 2.9 8,

2.99, and 3, finding the sine of each and checking to see

which has the largest sine. At the end of each of these

three searches, we want the computer to print three numbers:

the value X0 which has the largest sine, the sine of that

number, and the interval of search.

Before going to the teletype, we write a program and let

-29-

us assume that it is the following:

10 READ D
20 LET X0 =

30 F0R X = T0 3 STEP D
40 IF SIN (X) < = M THEN 100
50 LET X0 = X
60 LET M = SIN (X0)
70 PRINT X0 , X, D
80 NEXT XO
90 G0 T0 20
100 DATA .1, .01, .001
110 END

We shall list the entire sequence on the teletype and make
explanatory comments on the right side.

NEW 0R 0LD--NEW
NEW FILE NAME-- MAXSIN
READY
10 READ D

20 LWR X0"
30 F0R X = T0 3 STEP D

40 IF SINE«-(X) <= M THEN
50 LET X0=X
GO LET M = SIN(X)
70 PRINT X0, X, P
80 NEXT Z«-XO
90 00 TS 20
20 LET XOrO
100 DATA .1 , .01, .001
1 10 END
RUM

100

MA XS I

N

1 1:35 10/20/67

ILLEGAL VARIABLE IN 70
NEXT WITH0UT F0R IN 80
F0R WITH0UT NEXT IN 30

TIME: .07 SECS

70 PRINT XO,
40 IF SIN(X)
80 NEXT X
RUN

MAXSIN

0.1
0.2
0.3

TIME:

X,
< ~

D

M THEN 80

11:36

0.1
0.2

10/20/67

0.1
0.1

10 SECS

Notice the use of the backwards
arrow to erase a character in line
40 , which should have started IF
SIN (X) etc., and in line 80.

After typing line 90, we notice
that LET was mistyped in line 20,
so we retype it, this time
correctly.

After receiving the first error
message, we inspect line 70 and
find that we used X0 for a variable
instead of X0 . The next two error
messages relate to lines 30 and
80 , where we see that we mixed
variables. This is corrected by
changing line 80.

We make both of these changes by
retyping lines 70 and 80 . In
looking over the program, we also
notice that the IF-THEN statement
in 4 directed the computer to a
DATA statement and not to line 80
where it should go.

This is obviously incorrect. We
are having every value of X printed,
so we direct the machine to cease
operations by typing S even while
it is running. Note that the '

S'

does not print. We ponder the
program for a while, trying to
figure out what is wrong with it.
We notice that SIN(O) is compared
with M on the first time through
the loop, but we had assigned a
value to X0 but not to M. However
we recall that all variables are
set equal to zero before a RUN
so that line 20 is unneccessary

.

-30-

20
RUN

MAXSIN 11:37 10/20/67

UNDEFINED LINE NUMBER 20 IN 90

TIME: .07 SECS.

90 G0 T0 10
RUN

MAXSIN 11:43

0.1 0.1
0.2 n.2
0.3

TIME: .09 SECS.

70

10/20/67

0.1
0.1

*5 PRINT X0, M, D
5 PRINT "X VALUE", "SIN", RES0LUTI0N'
RUN

MAXSIN 11 :44 10/20/67

ILLEGAL VARIABLE IN 5

TIME:

5 PRINT
PUN

MAXSIN

X VALUE
1.6
1.57
1.57099

0UT 0F DATA

.06 SECS,

"X VALUE' 'SINE' 'RES0LUTI0N"

11:47

SINE
0.999574
1.

1.
IN 10

10/20/67

RES0LUTI0N
0,1
0.01
0.001

Of course, line 90 sent us back
to line 20 to repeat the oper-
ation and not back to line 10
to pick up a new value for D.
We retype line 90 and then type
RUN again.

We are about to print out the
same table as before. It is
printing out XO , the current
value of X, and the interval
size each time that it goes
through the loop.

We fix this by moving the PRINT
statement outside the loop.
Typing 70 deletes that line,
and line 85 is outside of the
loop. We also realize that we
want M printed and not X. We
also decide to put in headings
for our columns by a PRINT
statement.

There is an error in our PRINT
statement: no left quotation
mark for the third item.

Retype line 5, with all of
required quotation marks.

the

Exactly the desired results.
Of the 31 numbers (0,.1,.2,.3,
...,2.8,2.9,3) it is 1.6
which has the largest sine,
namely .999574. Similarly for
finer subdivisions. The whole
process took 1. 68 seconds of
the computer's time.

TIME: 1 .68 SECS.

-31-

LIST

MAXSIN n s4 g 10/20/67 „ „„ r,hanrf0 , c „ „„„„Having changed so many

?0REAdY
X WLUE"' "SINE"' ""K'LUTMN- Laralk°for

he
a SS?™'

30 F0R X = T0 3 STEP D
the corrected program.

40 IF SIN(X) <= M THEN 80
Listing the corrected

50 LET XO-X program, from time to

60 LET M = SIN(X)
time, is an important

80 NEXT X
part of debu9 cJing.

85 PRINT X0, M, D
90 G0 T0 10
100 DATA .1, .01, .001
110 END

The program is saved
for later use. This

READY should not be done

SAVE
READY

unless future use is
necessary.

In solving this problem, there is a common device which we

did not use, namely the insertion of a PRINT statement when we

wonder if the machine is computing what we think we asked it

to compute. For example, if we wondered about M, we could have

inserted 65 PRINT M, and we would have seen the values.

1. 7 Summary of Elementary BASIC Statements

In this section we shall give a short and concise descrip-

tion of each of the types of BASIC statements discussed earlier

in this chapter and add one statement to our list. In each

form, we shall assume a line number, and shall use brackets to

denote a general type. Thus, [variable] refers to any variable,

which is a single letter, possibly followed by a single digit.

1.7.1 LET

This statement is not a statement of algebraic equality,

but rather a command to the computer to perform certain comp-

utations and to assign the answer to a certain variable. Each

LET statement is of the form: LET [variable] = [formula].

-32-

More generally several variables may be assigned the same

value by a single LET statement.

Examples: (of the first type)

:

100 LET X = X + 1

259 LET W7 = (W-X4^3)*(Z - A/ (A - B))- 17

(of the second type)

:

50 LET X = Y3 = A(3,l) = 1

90 LET W = Z = 3*X - 4*X^2

1.7.2 READ and DATA

We use a READ statement to assign to the listed variables

values obtained from a DATA statement. Neither statement is

used without one of the other type. A READ statement causes

the variables listed in it to be given, in order, the nexu

available numbers in the collection of DATA statements. Before

the program is run, the computer takes all of the DATA state-

ments in the order in which they appear and creates a large

data block. Each time a READ statement is encountered any-

where in the program, the data block supplies the next avail-

able number or numbers. If the data block runs out of data,

with a READ statement still asking for more, the program is

assumed to be done and we get an 0UT 0F DATA message.

Since we have to read in data before we can work with it,

READ statements normally occur near the beginning of a program.

The location of DATA statements is arbitrary, as long as they

occur in the correct order. A common practice is to collect

all DATA statements and place them just before the END state-

-33-

merit.

Each READ statement is of the form:

READ [sequence of variables] and each DATA statement of

the form: DATA [sequence of numbers]

Examples: 150 READ X, Y, Z, XI, Y2 , Q9
330 DATA 4, 2, 1.7
340 DATA 6.734E-3, -174.321, 3.14159265

234 READ B (K)
26 3 DATA 2, 3, 5, 7, 9, 11, 10, 8, 6, 4

10 READ R (I, J)
440 DATA -3,5,-9,2.37,2.9876,-437.234E-5
450 DATA 2.765, 5.5576, 2.3789E2

Remember that only numbers are put in a DATA statement, and

that 15/7 and T3 are formulas, not numbers.

1. 7.3 PRINT

The PRINT statement has a number of different uses and

is discussed in more detail in Chapter II. The common uses

are (a) to print out the result of some computations, (b) to

print out verbatim a message included in the program, (c) a

combination of the two, and (d) to skip a line. We have

seen examples of only the first two in our sample programs.

Each type is slightly different in form, but all start with

PRINT after the line number.

Examples of type (a) : 100 PRINT X, SQR (X)
135 PRINT X, Y, Z, B*B - 4 *A*C , EXP (A-B)

The first will print X and then, a few spaces to the
right of that number, its square root. The second will print
five different numbers

:

X, Y, Z, B 2 -4AC, and eA
~B

.

The computer will compute the two formulas and print them for
you, as long as you have already given values to^A, B, and C.
It can print up to five numbers per line in this format.

-34-

Examples of type (b) : 100 PRINT "N0 UNIQUE S0LUTI0N"
430 PRINT "X VALUE", "SINE", "RES0LUTI0N"

Both have been encountered in the sample programs. The first
prints that simple statement; the second prints the three
labels with spaces between them. The labels in 430 auto-
matically line up with three numbers called for in a PRINT
statement— as seen in MAXSIN.

Examples of type (c) : 150 PRINT "THE VALUE 0F X IS" X
30 PRINT "THE SQUARE R00T 0F" X, "IS" SQR(X)

If the first has computed the value of X to be 3, it will
print out: THE VALUE 0F X IS 3. If the second has computed
the value of X to be 625, it will print out: THE SQUARE R00T
0F 625 IS 25.

Example of type (d) : 250 PRINT

The computer will advance the paper one line when it
encounters this command.

1.7.4 G0 T0

There are times in a program when you do not want all
commands executed in the order that they appear in the
program. An example of this occurs in the MAXSIN problem
where the computer has computed X0 , M , and D and printed
them out in line 85. We did not want the program to go
to the END statement yet, but to go through the same
process for a different value of D. So we directed the
computer to go back to line 10 with a G0 T0 statement.
Each is in the form of G0 T0 [line number]

.

Example: 150 G0 T0 75

1.7.5 IF — THEN

There are times when we are interested in jumping the
normal sequence of commands, if a certain relationship
holds. For this we use an IF—THEN statement, sometimes
called a conditional G0 T0 statement. Such a statement
occurred at line 40 of MAXSIN. Each such statement is of
the form

IF [formula] [relation] [formula] THEN [line number]

Examples: 40 IF SIN (X)<~MTHEN 80
20 IF G = THEN 65

The first asks if the sine of X is less than or equal
to M, and directs the computer to skip to line 80 if it
is. The second asks if G is equal to 0, and directs
the computer to skip to line 65 if it is. In each case,
if the answer to the question is No, the computer will
go to the next line of the program.

-35-

1.7.6 0N . . . G0 T0

This command is the one which we have not encountered
in the sample programs. The IF—THEN— instruction
allows a two-way fork in a program. 0N allows a many-
way switch. For example:

0N X G0 T0 100, 200, 150

This causes the following:

If X = 1, the program goes to line 100,

If X = 2, the program goes to line 200,

If X = 3, the program goes to line 150.

More generally, in place of X any formula may occur, and
there may be any number of line numbers in the instruction,
as long as it fits on a single line. The value of the
formula is computed and its integer part is taken. If
this is 1, the program transfers to the line whose number
is first on the list; if it is 2, to the second one, etc.
If the integer part of the formula is below 1, or if it
is larger than the number of line numbers listed, an
error message is printed.

To increase the similarity between the 0N and IF-THEN
instructions , the instruction

IF X > 5 THEN 200

may also be written as

IF X> 5 G0 T0 200.

Conversely, "THEN" may be used in an "0N" statement.

1.7.7 F0R and NEXT

We have already encountered the F0R and NEXT statements
in our loops, and have seen that they go together, one
at the entrance to the loop and one at the exit, directing
the computer back to the entrance again. Every F0R
statement is of the form

F0R [variable] = [formula] 10 [formula] STEP [formula]

Most commonly, the expressions will be integers and the
STEP omitted. In the latter case, a step size of one
is assumed. The accompanying NEXT statement is simple in
form, but the variable must be precisely the same one
as that following F0R in the F0R statement. Its form is
NEXT [variable]

.

-36-

Examples: 30 F0R X = T0 3 STEP Dw < 80 NEXT X

120 F0R X4 - (17 + C0S(Z))/3 T0 3*SQR(10) STEP 1/4
235 NEXT X4

240 F0R X = 8 T0 3 STEP -1

4 56 F0R J = -3 T0 12 STEP 2

Notice that the step size may be a formula (1/4) , a
negative number (-1) , or a positive number (2) . In the
example with lines 120 and 235, the successive values
of X4 will be .25 apart, in increasing order. In the
next example, the successive values of X will be 8, 7, 6,
5, 4, 3. In the last example, on successive trips
through the loop, J will take on values -3, -1, 1, 3, 5,
7, 9, and 11.

If the initial, final, or step-size values are given as
formulas, these formulas are evaluated once and for all
upon entering the F0R statement. The control variable
can be changed in the body of the loop; of course, the
exit test always uses the latest value of this variable.

If you write 50 F0R Z = 2 T0 -2, without a negative step
(size, the body of the loop will not be performed and the
v-"' computer will proceed to the statement immediately

following the corresponding NEXT statement.

1.7.

8

DIM

Whenever we want to enter a list or a table with a
subscript greater than 10, we must use a DIM statement
to inform the compute*- to save us sufficient room for
the list or the table.

Examples: 20 DIM H(35)
35 DIM Q(5,25)

The first would enable us to enter a list of 35 items
(or 36 if we use H(0)) , and the latter a table 5 x 25,
or by using row and column we get a 6 x 26 table.

1.7.9 END

Every program must have an END statement, and it must be
the statement with the highest line number in the program.
Its form is simple: a line number with END.

Example: 999 END

-37-

L

Chapter II

ADVANCED BASIC

2. 1 More About PRINT

The uses of the PRINT statement were described in 1.7.3,

but we shall give more detail here. Although the format of

answers is automatically supplied for the beginner, the PRINT

statement permits a greater flexibility for the more advanced

programmer who wishes a different format for his output.

The teletype line is divided into five zones of fifteen

spaces each. Some control of the use of these comes from the

use of the comma: a comma is a signal to move to the next

print zone or, if the fifth print zone has just been filled,

to move to the first print zone of the next line.

More compact output can be obtained by use of the semi-colon,

If a label (expression in quotes) is followed by a semi-colon,

the label is printed with no space after it. If a variable is

followed by a semi-colon, its value is printed in the following

format:

First, a minus sign or a space (if it is positive)

,

then, the numerical value,

then, a single space.

Thus printing a list of numbers in semi-colon format will pack

them in closest readable form.

For example, if you were to type the program

10 F0R I = 1 T0 15
20 PRINT I

30 NEXT I

40 END

the teletype would print 1 at the beginning of a line, 2 at the

-38-

beginning of the next line, and so on, finally printing 15 on

the fifteenth line. But, by changing line 20 to read

2 PRINT I,

you would have the numbers printed in the zones, reading

i
2 3 4 s6 7 p ~

5

II 1? ?- 5 10ld 13 14 15

If you wanted the numbers printed in this fashion, but more

tightly packed, you would change line 20 to replace the comma

by a semi-colon:

20 PRINT I;

and the result would be printed

1 2 3 4 5 f, 7 8 9 10 I I 12 13 1-1 15

You should remember that a label inside quotation marks

is printed just as it appears and also that the end of a PRINT

signals a new line, unless a comma or semi-colon is the last

symbol

.

Thus, the instruction

50 PRINT X, Y

will result in the printing of two numbers and the return to

the next line, while

50 PRINT X, Y,

will result in the printing of these two values and nc return

—

the next number to be printed will occur in the third zone, after

the values of X and Y in the first two.

Since the end of a PRINT statement signals a new line, you

will remember that

250 PRINT

-39-

will cause the typewriter to advance the paper one line. It will

put a blank line in your program, if you want to use it for vert-

ical spacing of your results, or it causes the completion of

partially filled line, as illustrated in the following fragment

of a program:

50 F0R M = 1 T0 N
110 FOR J = T0 M
120 PRINT B(M,J) ;

130 NEXT J
140 PRINT
150 NEXT M

This program will print B(1,0) and next to it B(l,l). Without

line 140, the teletype would then go on printing B(2,0) , B(2 f l),

and B(2,2) on the same line, and then B(3,0), B(3,l) etc. Line

140 directs the teletype, after printing the B(l,l) value

corresponding to M = 1, to start a new line and to do the same

thing after printing the value of B(2,2) corresponding to M = 2,

etc.

The instructions

50 PRINT "TIME-TSHAR";"IMG";
51 PRINT " AT";" DARTTM0UTH"

will result in the printing of

TIME-SHARING AT DARTM0UTH

Formatting of output can be controlled even further by use

of the function TAB.

Insertion of TAB (17) will cause the teletype to move to

column 17, just as if a tab had been set there. For this purpose

the positions on a line are numbered from through 74, and 75

is assumed to be the position again.

More precisely, TAB may contain any formula as its argument.

The value of the formula is computed, and its integer part is

-40-

taken. This in turn is treated modulo 75, to obtain a value

from through 74— as indicated above. The teletype is then

moved forward to this position— unless it has already passed

this position, in which case the TAB is ignored.

For example, inserting the following line in a loop:

PRINT X; TAB(12); Y ; TAB(27); Z

will cause the X-value to start in column 0, the Y-values in

column 12 and the Z-values in column 27.

The following rules for the printing of numbers will help

you in interpreting your printed results:

1. If a number is an integer, the decimal point is not

printed. If the integer contains more than eight

digits, the teletype will give you the first digit,

followed by (a) a decimal point, (b) the next five

digits, and (c) an E followed by the appropriate integer.

For example, it will take 32,437,580,259 and write

it as 3.24376E+10.

2. For any decimal number, no more than six significant

digits are printed.

3. For a number less than 0.1, the E notation is used

unless the entire significant part of the number can be

printed as a six decimal number. Thus, 0.0 3456 means

that the number is exactly .0345600000, while 3.45600E-2

means that the number has been rounded to .0345600.

4. Trailing zeros after the decimal point are not printed.

The following program, in which we print out powers of

2, shows how numbers are printed.

-41-

10 F0R N = -5 T0 30
20 PRINT 2tN|
30 NEXT N

40 END

READY

RUN

P0WERS 1 1 s 54 10/20/67

0.03125 0.0625 0.125 0.25 0.5 1 2 4 8 16 32 64 128 256 512
1024 2048 4096 8192 16384 32768 65536 131072 262144 524288
1048576 2097152 4194304 8388608 16777216 33554432 S7108864
1.34218 E+8 2.68435 E+8 5.36871 E+8 1.07374 E+9

TIME: .06 SECS.

2 . 2 Functions and DEF

Five functions were listed in Section 1.2 but not described.

We will discuss INT, RND and SGN here and leave NUM and DET until

the MAT section.

The INT function is the function which frequently appears

in algebraic computation as [x] , and it gives the greatest integer

not greater than x. Thus INT (2. 35) = 2, INT (-2.35)= -3, and

INT (12) = 12.

One use of the INT function is to round numbers. We may

use it to round to the nearest integer by asking for INT(X + .5).

This will round 2.9, for example, to 3 , by finding INT (2. 9 + .5) =

INT (3.4) = 3. You should convince yourself that this will

indeed do the rounding guaranteed for it (it will round a number

midway between two integers up to the larger of the integers)

.

It can also be used to round to any specific number of

decimal places. For example, INT (10*X + .5)/10t2will round X

-42-

correct to two decimal places, and INT (X*10^ D + . 5)/10fD round

X correct to D decimal places.

The function RND produces a random number between and 1.

The form of RND does not require an argument.

If we want the first twenty random numbers, we write the

program below and we get twenty six-digit decimals. This is

illustrated in the following program.

10 F0R L = 1 T0 20
20 PRINT RND,
30 NEXT L
40 END
RUN

RNDN0S 13:24 10/20/67

0.406533
0.863799
0.570427
5.00548 E-2

0.88445
0.880238
0.897931
0.393226

TIME? .08 SECS.

RUN

RNDN0S 13:25

0.681969
0,638311
0.628126
0.680219

0.939462
0.602898
0.613262
0.632246

0.253358
0.990032
0.303217
0.668218

10/20/67

0.406533
0.863799

TIME:

0.88445

.05 SECS.

0.681969 0.939462 0.253358

v..

Note that the second RUN was giving exactly the same

"random" numbers as the first RUN. This greatly facilitates the

debugging of programs that use the random number generator.

On the other hand, if we want twenty random one-digit integers,

-43-

we could change line 20 to read

20 PRINT INT(10*RND)

,

and we would then obtain

RNDN0S 13:26 10/20/67

4 8 6 9 2
8 8 6 6 9
5 8 6 6 3

3 6 6 6

TIME: .07 SECS.

We can vary the type of random numbers we want. For example,

if we want 20 random numbers ranging from 1 to 9 inclusive, we

could change line 20 as shown

20 PRINT IMT(9*RND +1);
RUM

RNDNPS 13:28 10/20/67

4879 3 886696966314 767
TIME: .07 SECS.

or we can obtain random numbers which are integers from 5 to 2 4

inclusive by changing line 20 as in the following example.
20 PRINT INT(20*RND + 5)?
RUN

3MDN0S 13:28 10/20/67

13 22 18 23 10 22 22 17 17 24 16 22 17 17 11 6 12 18
17 18

TIME: .07 SECS.
In general, if we want our random numbers to be chosen from the

A integers of which B is the smallest, we would call for INT(A*RND +B)

-44-

As we noted when we ran the first program of this section

twice, we got the same numbers in the same order each time.

However, we can get a different set by use of the instruction

RAND0MIZE as in the following program. We show successive runs

5 RANDOMIZE
10 F0R L = 1 T0 20
20 PRINT INT(10*RND):
30 NEXT L
40 END
RUN

RNDN4S 13:32 10/20/S7

19421 1 663S4QR65P6260
TIME: .07 SECS.

RUN

RNDN0S 13:33 10/20/67

1146S605384081051801
TIME: .04 SECS.

RAND0MIZE (or more briefly RAND0M) resets the random numbers

in a random way. For example, if this is the first instruction

in a program using random numbers, as in the above program, then

repeated RUNs of the program will produce different results.

If the instruction is absent, then the "official list" of

random numbers is obtained in the usual order.

It is suggested that a simulation model should be debugged

without this instruction, so that one always obtains the same

random numbers in test runs. After the program is debugged, one

inserts

1 RAND0M

-45-

before starting production runs.

The SGN function is one which assigns the value 1 to any

positive number, to zero, and -1 to any negative number. Thus

SGN(7.23) = 1, SGN(0)= 0, and SGN(-.2387) = -1. For example,

the statement 50 0N SGN(X) + 2 G0 T0 100, 200, 300 will transfer

to 100 if X<0, to 200 if X = 0, and to 300 if X^0.

In addition to the standard functions, you can define any

other function which you expect to use a number of times in your

program by use of a DEF statement. The name of the defined

function must be three letters, the first two of which are FN.

Hence, you may define up to 26 functions, e.g., FNA, FNB , etc.

The handiness of such a function can be seen in a program

where you frequently need the function e_x + 5. You would

introduce the function by the line

30 DEF FNE(X) = EXP (-X ^ 2 + 5)

and later on call for various values of the function by FNE(.l),

FNE(3.45) ,FNE (A+2) , etc. Such definition can be a great time-

saver when you want values of some function for a number of

different values of the variable.

The DEF statement may occur anywhere in the program, and

the expression to the right of the equal sign may be any formula

which can be fitted onto one line. It may include any combination

of other functions, including ones defined by different DEF

statements, and it can involve other variables besides the ones

denoting the argument of the function.

Each function defined may have zero, one, two, or more

-46-

variables. For example:

10 DEF FNB(X,Y) = 3*X*Y - Y^3

105 DEF FNC(X,Y ; Z,W) = FNB (X, Y) /FNB (Z ,W)

530 DEF FNA = 3.1416*R^2

In the definition of "FNA" the current value of R is used when

FNA occurs. Similarly, if FNR is defined by

70 DEF FNR(X) = SQR(2 + L0G(X) - EXP(Y*Z)*(X + SIN(2*Z)))

and you have previously assigned values to Y and Z, you can ask

for FNR (2. 7). You can give new values to Y and Z before the

next use of FNR.

The use of DEF as described so far is limited to those

functions whose value may be computed within a single BASIC

statement. However, there are functions which are tricky to

define in one line even though it is possible to do so (e.g.

the 'max' function) , and many functions cannot be defined in one

line. Thus the ability to have multiple line DEF's is extremely

useful. We first illustrate the method with the above-mentioned

example, the 'max' function. In this the possibility of using

'IF... THEN' as part of the definition is a great help:

10 DEF FNM(X,Y)

20 LET FNM = X

30 IF Y < = X THEN 50

40 LET FNM = Y

50 FNEND

The absence of the '=' sign in line 10 indicates that this is

a multiple line DEF. FNEND in line 50 terminates the definition.

The expression 'FNM' without an argument serves as a temporary

-47-

variable for the computation of the function value. The

following example defines N-factorial:

10 DEF FNF(N)

20 LET FNF = 1

30 F0R K = 1 T0 N

40 LET FNF = K * FNF

50 NEXT K

60 FNEND

Any variable which is not an argument of FN_ in a DEF loop will

have its current value in the program. Multiple line DEF's may

not be nested, and there must not be a transfer from inside the

DEF to outside its range, nor vice-versa.

2. 3 G0SUB and RETURN

When a particular part of a program is to be performed

more than one time, or possibly at several different places

in the overall program, it is most efficiently programmed as a

subroutine. The subroutine is entered with a G0SUB statement,

where the number is the line number of the first statement in

the subroutine. For example,

90 G0SUB 210

directs the computer to jump to line 210, the first line of the

subroutine. The last line of the subroutine should be a return

command directing the computer to return to the earlier part of

the program. For example,

350 RETURN

will tell the computer to go back to the first line numbered

greater than 90, and to continue the program there.

48-

The following example, a program for determining the

greatest common divisor of three integers using the Euclidean

Algorithm, illustrates the use of a subroutine. The first two

numbers are selected in lines 30 and 40 and their GCD is deter-

mined in the subroutine, lines 200-310. The GCD just found

is called X in line 60, the third number is called Y in line

70/ and the subroutine is entered from line 80 to find the GCD

of these two numbers. This number is, of course, the greatest

common divisor of the three given numbers and is printed out with

them in line 90.

You may use a G0SUB inside a subroutine to perform yet

another subroutine. This would be called "nested G0SUBs" . In any

case, it is absolutely necessary that a subroutine be left only

with a RETURN statement, using a G0T0 or an IF-THEN to get out

of a subroutine will not work properly. You may have several

RETURNS in the subroutine so long as exactly one of them will be

used.

10 PRINT " A", " B", " C", "GCD"
20 READ A,B,C
30 LET X = A

40 LET Y = B
50 G0SUB 200
SO LET X = G
70 LET Y = C
80 G0SUB 200
90 PRINT A,B,C,G
100 G0 T0 20
110 DATA 60,90,120
120 DATA 38456,64872,98765
130 DATA 32,384,72
200 LET Q = INTCX/Y)
210 LET R = X - Q*Y
220 IF R = THEN 300
230 LET X = Y
240 LET Y = R
250 G0 T0 200
300 LET G = Y
310 RETURN
320 END

-49-

RUN

GCD3N0S. 13:38 10/20/67

A B
60 go

c GCD

3

3

|
455 ?«B72 ^ 7

°
55 J°

0UT 0F DATA IN 20 8

TIME: .08 SECS.

2.4 INPUT

There are times when it is desirable to have data entered

during the running of a program. This is particularly true when

one person writes the program and enters it into the machine's
*memory , and other persons are to supply the data. This may be

done by an INPUT statement, which acts as a READ statement but

does not draw numbers from a DATA statement. If, for example,

you want the user to supply values for X and Y into a program,

you will type

40 INPUT X, Y

before the first statement which is to use either of these

numbers. When it encounters this statement, the computer will

type a question mark. The user types two numbers, separated by

a comma, presses the return key, and the computer goes on with

the rest of the program.

Frequently an INPUT statement is combined with a PRINT

statement to make sure that the user knows what the question mark

is asking for. You might type

* See Appendix B

-50-

20 PRINT "Y0UR VALUES 0F X, Y, AND Z ARE";

30 INPUT X, Y, Z

and the machine will type out

Y0UR VALUES 0F X, Y, AND Z ARE?

Without the semicolon at the end of line 20, the question mark

would have been printed on the next line.

Data entered via an INPUT statement is not saved with the

program. Furthermore, it may take a long time to enter a large

amount of data using INPUT. Therefore, INPUT should be used

only when small amounts of data are to be entered, or when it

is necessary to enter data during the running of the program such

as with game-playing programs.

2 . 5 Some Miscellaneous Statements

Several other BASIC statements that may be useful from time

to time are ST0P, REM and REST0RE.

ST0P is entirely equivalent to G0T0 xxxxx, where xxxxx is

the line number of the END statement in the program. It is useful

in programs having more than one natural finishing point. For

example, the following two program portions are exactly equivalent.

250 G0 T0 999 250 ST0P

340 G0 T0 999 340 ST0P

v_.

999 END 999 END

REM provides a means for inserting explanatory remarks in a

program. The computer completely ignores the remainder of that

line, allowing the programmer to follow the REM with directions

-51-

for using the program, with identifications of the parts of a

long program, or with anything else that he wants. Although

what follows REM is ignored, its line number may be used in a

G0T0 or IF-THEN statement.

100 REM INSERT DATA IN LINES 900-99 8. THE FIRST
110 REM NUMBER IS N, THE NUMBER 0F P0INTS . THEN
120 REM THE DATA P0INTS THEMSELVES ARE ENTERED, BY

200 REM THIS IS A SUBR0UTINE F0R S0LVING EQUATI0NS

300 RETURN

520 G0SUB 200

There is a second method for adding comments to a program.

Place an ' (apostrophe) at the end of the line, followed by a

remark. Everything following the ' is ignored by BASIC. There

is one obvious exception to this rule: if the line ended in a

string (see Section 2.7), then BASIC will think that the apos-

trophe is part of the string, and the method will not work.

Sometimes it is necessary to use the data in a program more

than once. The REST0RE statement permits reading the data as

many additional times as it is used. Whenever REST0RE is encount-

ered in a program, the computer restores the data block pointer

to the first number. A subsequent READ statement will then start

reading the data all over again. A word of warning— if the

desired data are preceded by code numbers or parameters , super-

fluous READ statements should be used to pass over these numbers.

As an example, the following program portion reads the data,

restores the data block to its original state, and reads the data

-52-

again. Note the use of line 570 to "pass over" the value of N,

which is already known.

100 HEAD N
110 F0R I = 1 T0 N
120 READ X

2 00 NEXT I

560 REST0RE
570 READ X
5 80 F0R I = 1 T0 N
590 READ X

2.6 MATRICES

Although you can work out for yourself programs which involve

matrix computations, there is a special set of thirteen instructions

for such computations. They are identified by the fact that

each instruction must start with the word 'MAT' . They are

MAT READ A, B, C

MAT C = ZER

MAT C = C0N

MAT C = IDN

MAT PRINT A, B; C

MAT INPUT V

MAT B = A

MAT C = A + B

MAT C = A - B

MAT C = A*B

MAT C = TRN(A)

Read the three matrices, their dimensions

having been previously specified.

Fill out C with zeroes.

Fill out C with ones.

Set up C as an identity matrix.

Print the three matrices, with A and

C in the regular format, but B closely

packed.

Calls for the input of a vector .

Set the matrix B equal to the matrix A.

Add the two matrices A and B.

Subtract the matrix B from the matrix A.

Multiply the matrix A by the number B.

Transpose the matrix A.

-53-

MAT C = (K) *A Multiply the matrix A by the number K.

The number K, which must be in parentheses,

must also be given by a formula.

MAT C = INV(A) Invert the matrix A.

These thirteen statements, with the addition of DIM, make

matrix computations easier, and in combination with the ordinary

BASIC instructions make the language much more powerful. However,

the user has to be careful to keep (and to understand!) the con-

ventions "built into" the language. We will discuss, below, the

individual MAT statements

.

The following convention has been adopted for MAT: while

every vector has a component , and every matrix has a row and

a column , the MAT instructions ignore these. Thus if in a MAT

instruction we have a matrix of dimension M-by-N, the rows are

numbered 1, 2,...,M, and the columns 1, 2,...,N.

The DIM statement may simply indicate what the maximum

dimension is to be. Thus, if we write

DIM M(20,35)

then M may have up to 20 rows and up to 35 columns. This state-

ment is to save enough space for the matrix, and hence, the only

care at this point is that the dimensions declared are large enough

to accommodate the matrix. However, in the absence of DIM statements

all vectors may have up to 10 components and matrices up to 10

rows and 10 columns. This is to say that in the absence of DIM

statements this much space is automatically saved for vectors and

matrices on their appearance in the program. The actual dimension

of a matrix may be determined either when it is first set up (by a

DIM statement) or when it is computed. Thus

-54-

10 DIM M(20,7)

50 MAT READ M

will read a 20-by-7 matrix for M, while

50 MAT READ M(17,30)

will read a 17-by-30 matrix for M, provided sufficient space has

been saved for it by writing, for example,

10 DIM M(20,35)

.

The three instructions

:

MAT M = ZER

MAT M = C0N

MAT M = IDN,

which set up a matrix M with all components zero, all components

equal to one, and as an identity matrix, respectively, act like

MAT READ as far as the dimension of the resulting matrix is

concerned. For example,

MAT M = C0N(7,3)

sets up a 7-by-3 matrix with 1 in every component, while

MAT M = C0N

sets up a matrix, with ones in every component, and of dimension

10-by-10 unless previously dimensioned otherwise. It should be

noted, however, that these instructions have no effect on row

and column zero! Thus

10 DIM M(20,7)

20 MAT READ M(7,3)

35 MAT M = C0N

70 MAT M = ZER(15,7)

90 MAT M = ZER(16,10)

-55-

will first read in a 7-by-3 matrix for M. Then it will set up a

7-by-3 matrix of all ones for M (the actual dimension having been

set up as 7-by-3 in line 20.) Next it will set up M as a

15-by-7 all zero matrix. (Note that although this is larger than

the previous M, it is within the limits set in 10.) But it will

result in an error message in line 90. The limit set in line 10

is (20+1) x (7+1) = 168 components, and in 90 we are calling for

(16+1) x (10+1) =18 7 components. Thus, although the zero rows

and columns are ignored in MAT instructions they play a role in

determining dimension limits. So, for example

90 MAT M = ZER(25,5)

would not yield an error message.

It, perhaps, should be noted that an instruction such as

MAT READ M(2,2) which sets up a matrix and which as we have said

ignores the zero row and column does however affect the zero row

and column. The redimensioning which may be implicit in an

instruction causes the relocation of some numbers and so they may

not appear subsequently in the same place. Thus even if we have

first LET M(1,0) = M(2,0) = 1, say, and then MAT READ M(2,2) the

values of M(1,0) and M(2,0) will now be 0. Thus, when using MAT

instructions, it is best not to use row and column zero.

The instruction

MAT PRINT A , B ; C

will cause the three matrices to be printed with A and C

in the normal format (i.e. with five components to a line and

starting each new row on a new line) and B closely packed.

Vectors may be used in place of matrices, as long as the

above rules are observed. Since a vector like V(I) is treated

-56-

as a column vector by BASIC, a row vector has to be introduced

as a matrix that has only one row. namely row 1. Thus

DIM X(7) , Y(0,5)

introduces a 7-component column vector and a 5-component row

vector.

If V is a vector then

MAT PRINT V

will print the vector V as a column vector.

MAT PRINT V,

will print V as a row vector, five numbers to the line, while

MAT PRINT V;

will print V as a row vector, closely packed.

The instruction

MAT INPUT V

will call for the input of a vector. The number of components

in the vector need not be specified! Normally the input is

limited by having to be typed on one line. However by ending

the line of input with & (before carriage return) the machine

will ask for more input on the next line. Note that, although

the number of components need not be specified, if we wish to

input more than 10 numbers we must save sufficient space with a

DIM statement. After the input the function NUM will equal

the number of components and V(l), V(2), ..., V(NUM) will be the

numbers inputted. This allows variable length input. For example

-57-

5 LET S =

10 MAT INPUT V

20 LET N = NUM

30 IF N = THEN 9 9

40 F0R I = 1 T0 N

45 LET S = S + V(I)

50 NEXT I

60 PRINT S/N

70 G0 T0 5

99 END

allows the user to type in sets of numbers, which are averaged.

The program takes advantage of the fact that zero numbers may

be inputted, and uses this as a signal to stop. Thus, the user

can stop t>y simply pushing "carriage return" on an input request.

MAT B = A

This sets B up to be the same as A and in doing so dimensions

B to be the same as A, provided sufficient space has been saved

for B.

MAT C = A + B, MAT C = A - B

For these to be legal A and B must have the same dimensions,

and enough space must be saved for C. They cause C to assume

the same dimensions as A and B. Instructions MAT A = A + B are

legal - the indicated operation is performed and the answer

stored in A. Only a single arithmetic operation is allowed so

MAT D = A + B - C is illegal but may be achieved with two MAT

instructions

.

-58-

MAT C = A * B

For this to be legal it is necessary that the number of

columns in A be equal to the number of rows in B. For example,

if A has dimension L-by-M and B has dimension M-by-N then

C = A * B will have dimension L-by-N. It should be noted that

while MAT A = A + B may be legal, MAT A = A * B will result in

nonsense! There is good reason for this. In adding two matrices

we may immediately store the answer in one of the matrices; but

if we attempt to do this in multiplying two matrices, we will

destroy components which would be needed to complete the compu-

tation! ! MAT B = A * A is , of course, legal provided A is a

'square' matrix.

MAT C = TRN(A)

This lets C be the transpose of the matrix A. Thus if A

is an M-by-N matrix C will be an N-by-M matrix.

MAT C = (K) * A

This lets C be the matrix A multiplied by the number K

(i.e. each component of A is multiplied by K to form the comp-

onents of C) . The number K, which must be in parentheses, may

be replaced by a formula. MAT A = (K) * A is legal.

MAT C = INV(A)

This lets C be the inverse of A. (A must, of course, be a

'square' matrix.) The function DET is available after the

execution of the inversion, and will equal the determinant of

A. This enables the user to decide whether the determinant was

large enough for the inverse to be meaningful. In particular,

attempting to invert a singular matrix will not cause the program

-59-

V.

to stop, but DET is set equal to . Of course, the user may

actually want the determinant of a matrix; he may obtain this

by inverting the matrix and then seeing what value DET has.

We close this section with two illustrations of matrix

programs. The first one reads in A and B in line 30 and in so

doing sets up the correct dimensions. Then, in line 40, A + A

is computed and the answer is called C - this automatically

dimensions C to be the same as A. Note that the data in line 90

results in A being 2-by-3 and B being 3-by-3. Both MAT PRINT

formats are illustrated, and one method of labeling a matrix

print is shown.

MATRIX 13:48 10/20/67

10 DIM A(20
5 20) 9B(20 S 20) P CC20,20)

20 READ M,N
30 MAT READ A (M, N) ,B (N,N)

40 MAT C = A + A
50 MAT PRINT C;
60 MAT C = A*B
70 PRINT
75 PRINT "A*B ="„
80 MAT PRINT C
90 DATA 2,3
91 DATA 1,2,3
92 DATA 4,5,6
93 DATA 1 ,0,-1
94 DATA 0,-1,-1
95 DATA -1 ,0,0
99 END

READY

RUN

MATRIX 13:4S 10/20/67

2 A 6

8 10 12

A*B r

-2 "2
-2 -5

TIME: .07 SECS

-3
-9

-60-

The second example inverts an N-by-N Hilbert Matrix

1 1/2 1/3 .. . 1/N

1/2

1/3

1/3

1/4

1/4

1/5

1/N 1/N+l l/N+2

1/N+l

l/N+2

1/2N-1

Ordinary BASIC instructions are used to set up the matrix

in lines 50 to 90. Note that this occurs after correct dimen-

sions have been declared. Then a single instruction results

in the computation of the inverse, and one more instruction

prints it. The fact that the function DET is available after an

inversion is also taken advantage of in line 130 to print tV.e

value of the determinant of A. In this example we have supplied

4 for N in the DATA statement and have made a run for this case.

HILMAT 13:52 10/20/67

5 REM THIS PR0GRAM INVERTS AM N-BY-N HILBERT MATRIX
10 DIM A(20,20),B(20,20)
20 READ N

30 MAT A = C0M(N,N)
50 F0R I = 1 T0 N

60 F0R J = 1 T0 N

70 LET A(I,J) = 1/<I+J-1)
R0 NEXT J
90 NEXT I

100 MAT B = INV(A)
115 PRINT "INV(A) =",
120 MAT PRINT B;
125 PRINT
130 PRINT "DETERMINANT 0F A =" DET
190 DATA 4

199 END

READY

-61-

RUN

HILMAT 13:52 10/20/67

INVCA) r

16.0001 -120.001 240.003 -140.002
-120.001 1200.01 -2700.03 1680.02
240.003 -2700.03 6480.08 -4200.05
-140.002 1680.02 -4200.05 2800.03

DETERMINANT 0F A r 1.65342 E-7

TIME: .08 SECS.

It may be of interest that a well-behaved 20 x 20 matrix

is inverted in about .5 seconds. However, the reader is warned

that beyond N = 7 the Hilbert matrix cannot be inverted

because of severe round-off errors.

Although it is not possible to create N-dimensionsal

arrays in BASIC, the method outline below will simulate them.

The example is of a 3-dimensional array but it has been written

in such a way that it could be changed to 4 or higher dimensions

easily. We use the fact that functions can have any number of

variables and we set up a one-to-one correspondence between the

components of the array and the components of a vector. The

number of components in the vector will equal the product of

the dimensions of the array. For example, if the array has

dimensions 2, 3,5 then the vector will have 30 components. A

multiple line DEF could be used in place of the simple DEF in

line 30 if the user wished to include error messages. The

print-out is in the form of two 3x5 matrices.

-62-

10 DIM VC1000)
20 MAT READ D(3)
30 DEF FNA(I,J,K) = ((I-1)*D<2) +<J-I))*D(3) + K

50 F0R I = 1 T0 D(l)
60 F0R J = 1 T0 D<2)
70 F0R K = 1 T0 D(3)
80 LET V(FNA(I,J,K)) = I+2*J+Kt2
SO PRINT V(FNA(I,J,K)),
100 NEXT K

110 NEXT J
112 PRINT
115 PRINT
120 NEXT I

900 DATA 2,3,5
999 END
RUN

3-ARRAY 08:07 10/27/67

4 7 12 19 28
6 9 14 21 30

8 11 16 23 32

5 8 13 20 29
7 10 15 22 31

9 12 17 24 33

2 .7 Alphanumeric Information

Our discussion of BASIC in previous sections dealt only

with numerical information. However, BASIC will also handle

alphabetic or combined alphabetic-numeric information. We

define a string to be a sequence of characters, each of which

is either a letter, a digit, a space, or some other printable

character (but not a quotation mark for reasons which will become

obvious below)

.

We may introduce variables for single strings and we may

introduce 'string' vectors (but not 'string' matrices). Any

ordinary variable followed by a $ (dollar sign) will stand for a

string. For example A$ or C7$ can denote strings. A vector

variable followed by $, e.g. V$ (), will denote a list of strings,

Thus, V$(7) is the 7th string in the list.

-63-

^ First of all strings may be read and printed. For example,

10 READ A$, B$, C$

20 PRINT C$; B$; A$

30 DATA ING, SHAR, TIME-

40 END

will print the word "time-sharing". Note that the effect of the

semi-colon in the print statement is consistent with that dis-

cussed in the section on PRINT, i.e. with alphanumeric output

the semi-colon causes close packing whether that output is in

quotes or is the value of a variable. Commas and TAB ' s may

be used as in any other PRINT statement. The loop

70 F0R I = 1 T0 12

80 READ M$(I)

\^_J 9 NEXT I

will read a list of 12 strings.

In place of the READ and PRINT corresponding MAT instructions

may be used for lists. For example, MAT PRINT M$; will cause

the members of the list to be printed without spaces between

them. We may also use INPUT or MAT INPUT. After a MAT INPUT

the function NUM will equal the number of strings inputted.

As usual, lists are assumed to have no more than 10

elements, otherwise a DIM statement is required. A statement

like

10 DIM M$(20)

saves room for twenty strings in the M$-list.

In the DATA statements numbers and strings may be inter-

l

v_. mixed. Numbers will be assigned only to numerical variables,

-64-

)
'

and strings only to string-variables. Strings in DATA state-

ments are recognized by the fact that they start with a letter.

If a string does not start with a letter, it must be enclosed in

quotes. The same requirement holds for a string containing a

comma. For example:

90 DATA 10, ABC, 5, "4FG", "SEPT. 22, 1967", 2

The only convention on INPUT is that a string containing a

comma must be enclosed in quotes.

With a MAT INPUT a string containing a comma or an ampersand

must be enclosed in quotes. For example:

"MR. & MRS. SMITH", MR. JONES

is in correct format for a response to a MAT INPUT.

In any of the three ways of getting string information

into a program, DATA, INPUT or MAT INPUT leading blanks are

ignored unless the string, including the blanks, is enclosed in

quotes

.

If in doubt about the use of strings, it is safest to

enclose the string in quotes.

Strings (in quotes) or string variables may occur in LET

and IF-THEN statements. The following two examples are self-

explanatory:

10 LET Y$ = "YES"

20 IF Z7$ = "YES" THEN 200

The relation "<" is interpreted as "earlier in alphabetic

order". This also serves to define the other relations. In any

comparison trailing blanks in a string are ignored. Thus

-65-

r

"YES" = "YES ".

We illustrate these possibilities by the following program

which reads a list of strings, and alphabetizes them:

10 DIM L$(50)

20 READ N

30 MAT READ L$ (N)

40 F0R I = 1 T0 N

50 F0R J = 1 T0 N-I

60 IF L$(J) = L$(J+1) THEN 100

70 LET A$ = L§ (J)

80 LET L$(J) = L$(J+1)

90 LET L$(J+1) = A$

100 NEXT J

110 NEXT I

120 MAT PRINT L$

900 DATA 5, 0NE , TW0 , THREE, F0UR, FIVE

999 END

If we omit the $ signs in this program, it serves to read a

list of numbers and prints them in increasing order.

A rather common use is illustrated by the following:

330 PRINT "D0 Y0U WISH T0 C0NTINUE";

340 INPUT A$

350 IF A$ = "YES" THEN 10

360 ST0P

Numeric and string DATA are kept in two separate blocks,

and these act independently of each other. Therefore REST0RE

will restore both the numerical data and the string data.

REST0RE* will restore only the numerical data and RESTORE$ will

-66-

restore only the string data.

In BASIC it is very easy to "get at" the individual

digits in a number by using the function INT. It is

possible to "get at" the individual characters in a string

with the instruction CHANGE. The use of CHANGE is best

illustrated with examples.

5 DIM AC65)
10 READ A$
15 CHANGE A$ T0 A

20 F0R I r T0 A(0)
25 PRINT A(I)J
30 NEXT I

40 DATA ABCDEFGHIJKLMN0PQRSTUVWXYZ
45 END

READY

RUM

CHANGE 13:55 10/20/67

26 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
82 83 84 85 86 87 88 89 90

TIME* ,06 SECS

The instruction CHANGE A$ T0 A in line 15 has caused the

vector A to have as its zero component the number of character

in the string A$ and to have certain numbers in the other com-

ponents. These numbers are the BASIC 'code' numbers for the

characters appearing in the string e.g. A(l) is 65 - the

BASIC code number for A.

The BASIC code for the printable characters is:

-67-

Character BASIC C

« tt 32
•t | it 33
tl it «i 34
"# M 35
-$" 36
"Z" 37
"&" 38
11 t M 39
ft / 11 40
It \ It 41
"*" 42
11 tt 43
II tt 44
IIm II 45
n tt

• 46
it yit 47
t.Qt. 48
tl

]
It 49

"2" 50
"3" 51
"4" 52
fIC tl 53
"6" 54
tt » W 55
"8" 56
"9" 57
ft # •#

• 58
tt m tt

9
59

"< M 60
n _ M 61
ti^ it 62
tl nit 63
"@" 64
"A" 65
«g.. 66
MC" 67
M
D
M 68

"E" 69
wp H 70
"G" 71

"H" 72
It T II 73

"J" 74

"K" 75

"L
M 76

W
M" 77
"N" 78
"0" 79
ttpti 80
"Q" 81
"R" 82

Character BASIC Cod

Til 84
"IT 85
"V" 86
"W" 87
"X" 88
Hull 89
"Z" 90
nr it 91
ii. n 92
•i I ti 93
it* tt 94

Additional symbols useful

on output are:

^— (backward arrow) 95

E0T (end of transmission) 4

BELL (rings bell in teletype)

7

LF (line feed) 10

CR (carriage return) 13

RUB-0UT (tape use only) 127

This is not a complete list -

there are 128 characters

numbered through 127. Some

of these numbers duplicate

the above (on some teletypes)

some are for teletypes with

upper and lower case letters,

and some are useless.

,

s
.i 83

-68-

The other use of CHANGE is illustrated now:

10 FOR I = T0 5

15 READ A (I)

20 NEXT I

25 DATA 5, 65, 66, 67, 68, 69

30 CHANGE A T0 A$

35 PRINT A$

40 END

This will print ABCDE because the numbers 65 - 69 are the

code numbers for A - E. Before CHANGE is used in the 'vector

to string' direction we must give the number of characters

which are to be in the string as the zero component of the

vector. Above A(0) is read as 5. A final example:

5 DIM V(128)
10 PRINT "WHAT Dfif Y0U WANT THE VECTGR V T0 BE":
20 MAT INPUT V
30 LET V/(0) = NUM
40 CHANGE V TJZT AS
50 PRINT AS
60 G0 T# 10
70 END

READY

RUN

EXAMPLE 13:59 10/20/67

WHAT D0 Y0U WANT THE VECT0R V T0 BE? 40,32.45. 60, 45,89. 90
< -<-YZ
WHAT D0 Y0'J WANT THE VECT0R V T0 BE? 32,33,34,35,36,37,38,39,40,41,42,43
? 44,45,46,47,48,49,50

' '

!"#$2&*<)*+,-./012
WHAT D0 Y0U WfNT THE VECT0R V T0 BE? 4

-69-

Note that in this example we have used the availability of

the function NUM after a MAT INPUT to find the number of

characters in the string which is to result from line 40.

Giving the input 4 on request gets the response E0T (end of

transmission) which turns off the teletype.

2.8 Error Messages

The various error messages that can occur in BASIC,

together with their interpretation, are now given:

Error Message Interpretation

DIMENSI0N T00 LARGE

ILLEGAL C0NSTANT

ILLEGAL F0RMULA

ILLEGAL RELATI0N

ILLEGAL LINE NUMBER

ILLEGAL INSTRUCTI0N

ILLEGAL VARIABLE

ILLEGAL F0RMAT

The size of a list or table is too
large for the available storage.
Make them smaller. (See Appendix B.)

More than nine digits or incorrect
form in a constant number, or a
number out of bounds (>1. 70141 E + 38)

Perhaps the most common error message,
may indicate missing parentheses,
illegal variable names, missing
multiply signs, illegal numbers, or
many other errors. Check the state-
ment thoroughly.

Something is wrong with the relational
expression in an IF-THEN statement.
Check to see if you used one of the
six permissible relational symbols.

Line number is of incorrect form,
or contains more than five digits.

Other than one of the legal BASIC
instructions has been used following
the line number.

An illegal variable name has been used.

The format of an instruction is wrong.
See especially IF - THEN's and F0R's.

-70-

END IS N0T LAST

N0 END INSTRUCTI0N

N0 NUMERIC DATA

N0 STRING DATA

UNDEFINED FUNCTION FN

Self-explanatory, it also occurs if
there are two or more END statements
in the program.

The program has no END statement.

There is at least one READ statement
calling for numeric data, but no
numeric data, in the program.

There is at least one READ statement
calling for string data, but no
string data, in the program.

A function such as FNF () has been
used without appearing in a DEF
statement. Check for typographical
errors

.

UNDEFINED LINE NUMBER

NEXT WITHOUT F0R

F0R WITH0UT NEXT

ILLEGAL CHARACTER

INC0RRECT NUMBER 0F
ARGUMENTS

CUT PR0GRAM 0R DIMS

INCORRECT NUMBER 0F
SUBSCRIPTS

F0RS NESTED T00 DEEPLY

ILLEGAL LINE REFERENCE

The line number appearing in an 0N,
G0 T0 or IF THEN statement does not
appear as a line number in the program.

An incorrect NEXT statement, perhaps
with a wrong variable given.

A missing NEXT statement - can occur
in conjunction with the previous one.

The line contains a character foreign
to BASIC.

A function has been defined with a
certain number of arguments and
later called for with a different
number

.

Either the program is too long, or
the amount of space reserved by the
DIM statements is too much, or a
combination of these. This message
can be eliminated by either cutting
the length of the program, or by
reducing the size of the lists and
tables, reducing the length of
printed labels, or reducing the
number of simple variables.

A matrix with one subscript or a
vector with two.

Too many F0R statements before the
necessary NEXT statements.

There is some character other than
a number in this transfer (e.g. G0 T0)
statement where the line number should
be.

-71-

UNFINISHED DEF

NESTED DEF

A multiple line DEF has not been
ended correctly with FNEND.

Multiple line DEF ' s must not be
nested. (However, functions de-
fined elsewhere may be used in a
DEF.)

EXPRESSI0N T00 C0MPLICATED Probable that too many parentheses
have been used. Use two statements
in place of this one.

T00 MANY CONSTANTS

ILLEGAL MAT TRANSP0SE

ILLEGAL MAT FUNCTION

ILLEGAL MAT MULTIPLE

MISMATCHED STRING
0PERATI0N

SYSTEM ERR0R

Too many constants which the machine
finds difficult to handle in binary.
Put some in as DATA.

MAT A = TRN(A) is illegal.

Other than one of the legal MAT
functions listed in Chapter 2

has been used.

Self explanatory. MAT A = A * B
is illegal.

The machine has been asked to
combine two strings algebraically,
to compare a string and a number, or
to assign a number to a string vari-
able or vice versa.

Error in BASIC!! Please report.

The following error messages can occur after your program

has run for awhile. Thus, they may conceivably occur after the

first part of your answers have been printed. All of these

errors indicate the line number in which the error occurred.

0UT 0F DATA A READ statement for which there is
no DATA has been encountered. This
may mean a normal end of your program,
and should be ignored in those cases.
Otherwise, it means that you haven't
supplied enough DATA. In either case,
the program stops.

-72-

SUBSCRIPT ERR0R

RETURN BEF0RE G0SUB

G0SUB NESTED T00 DEEPLY

DIVISI0N BY ZER0

ZER0 T0 A NEGATIVE P0WER

DIMENSI0N ERR0R

ABS0LUTE VALUE RAISED T0
P0WER

0VERFL0W

UNDERFL0W

EXP T00 LARGE

A subscript has been called for
that lies outside the range spec-
ified in the DIM statement, or i^
no DIM statement applies, outside
the range through 10. The program
stops

.

Occurs if a RETURN is encountered
before a corresponding G0SUB during
the running of a program. (Note:
BASIC does not require the G0SUB
to have an earlier statement number

—

only to perform a G0SUB before
performing a RETURN.) The program
stops

.

Too many G0SUBS without a RETURN.
It may mean that subroutines are
being exited by G0T0 or IF-THEN
statements rather than by RETURNS.
The program stops.

A division by zero has been attempted.
The computer assumes the answer is
+ =>° (for which the largest positive
number, about 1.7E+38, is used) and
continues running the program.

A computation of the form ^ (-1)

has been attempted. The computer
procedes as in the previous case.

A dimension inconsistency has
occurred in connection with one of
the MAT statements . The program
stops

.

A computation of the form (-3)4* 2.7
has been attempted. The computer
supplies (ABS(-3)) f2.7 and continues.
Note: (-3)^ 3 is correctly computed
to give -27.

A number larger than about 1.70141 E+38
has been generated. The computer
supplies + (or-) =o and continues
running the program.

A number in absolute size smaller than
about 1.46937E-39 has been generated.
The computer supplies and continues
running the program. In many circum-
stances, underflow is permissible and
may be ignored.

The argument of the exponential
function is > 88.029 + « is
supplied for the value of the ex-
ponential, and the running is continued,

-73-

L0G 0F NEGATIVE NUMBER

L0G 0F ZER0

SQUARE R0#T 0F A NEGATIVE
NUMBER

The program has attempted to calculate
the logarithm of a negative number.
The computer supplies the logarithm
of the absolute value and continues.

The program has attempted to calculate
the logarithm of 0. The computer
supplies - =>o and continues running
the program.

The program has attempted to extract
the square root of a negative number.
The computer supplies the square root
of the absolute value and continues
running the program.

0N EVALUATED 0UT 0F RANGE The integer part of the variable in
the 0N instruction is less than one
or greater than the number of line
numbers listed. The program stops.

USELESS L00P IN

0UT 0F R00M

TIME UP — L00PING IN

The program contains a loop which does
nothing and keeps looping. The program
stops.

The amount of space reserved for the
program was not sufficient. Try
adding a string DIM statement to
acquire more space, e.g. DIM A$(1000).

Occurs only with TEACH programs and
means that the program is taking
an unreasonable length of RUN time
to do the task assigned.

INPUT DATA N0T IN C0RRECT F0RMAT — RETYPE IT Self-explanatory.

N0T EN0UGH INPUT — ADD M0RE Self-explanatory.

T00 MUCH INPUT — EXCESS IGN0RED Self-explanatory.

2.9 Limitations on BASIC

While the language BASIC has no inherent limitations on

the size or complexity of programs, its implementation on any

specific computer is limited by the physical characteristics of

the machine and the nature of the implementation. The following

•74-

remarks are applicable to the current implementation on a

GE-635 time-sharing system. Even here, they are subject to

change as the implementation is improved.

Since there is only a finite amount of space available in

the memory of the 635, there is a limit to the size of BASIC

programs that may be RUN. However, these limitations do not

apply to any single feature of the proqram, but to its total

requirements. While this optimizes the use of space, it makes

it difficult to give a precise rule. The following is a useful

rule of thumb:

Let C = no. of characters in program

M = no. of components in all vectors and matrices

S = no. of strings

then C/4 + M + S < 8000 is a requirement. The user will

know M and S, and may obtain C by a LENGTH command. But this

rule only assures that the program will be compiled (translated

from BASIC to machine language) . If the program generates an

unusually long code, or if there are many long strings, then it

may still fail to RUN. This results in an 0UT 0F R00M message.

The user must then cut the code, or reduce the size of matrices

or of strings.

The same message may, however, occur for an entirely

different reason, even in a short program. Since the length of

strings is not known at the start, BASIC may not save enough

room for very long strings. Thus, if the user plans to use

strings of more than 60 characters, it is best to add a vacuous

DIM A$(1000) statement, to assure sufficient space.

-75-

There is one additional limitation: Only 100 constants

may occur in the program. However, certain simple constants-

such as small integers — do not count towards this quota.

-76-

APPENDICES

Appendix A — Using the Time-Sharing System

The Dartmouth Time-Sharing System consists of a large
central computer with a number of input-output stations
(currently, models 33 and 35 teletype machines) . Individuals
using the input-output stations are able to "share" the use of
the computer with each other in such a way as to suggest that
each has sole use of the computer. The teletype machines are
the devices through which the user communicates with the
computer.

THE KEYBOARD

The teletype keyboard is a standard typewriter keyboard
for the most part. There are some special keys that the
user must be familiar with.

RETURN This is located at the right-hand end of the
third row of keys, and does more than act as
an ordinary carriage return. The computer
ignores the line being typed until this key
is pushed.

This key is located on the "oh" key when
either SHIFT key is pressed. It is used to
delete the character of space immediately
preceding the "«-"

. if this key is pressed
N times, the characters or spaces in the N
preceding spaces will be deleted.

ABCWT«-«-DE appears as ABCDE when RETURN is
pushed.
AB C^^-CDE appears as ABCDE when RETURN is
pushed.

CTRL - X The CTRL (control) key is located at the left-
hand end of the second row of keys beside A.
The combination CTRL-X acts as a carriage return
but also deletes the entire line being typed.

CTRL-
SHIFT-P This combination will cause the machine to stop

whatever it is doing, e.g. if in a RUN, it will
stop and give the RUN time.

(Some languages available on the time-sharing system
use the three characters " \ "

, "[", and "]". They
are located on the keys "L", "K", and "M" respectively
when either SHIFT key is pushed.)

-77-

TELETYPE OPERATION . .

.

. .

.

FROM DIRECT LINE TELETYPES .

Besides the keyboard itself there are 4 buttons necessary
to operate the machine.

BUTTON LOCATION FUNCTION

ORIG

CLR

LOC LF

leftmost of six turns on the teletype
small buttons on
the right.

BUZ-RLS

next to ORIG

left of the
space bar on
model 35 tele-
types only.

rightmost of
six small but-
tons on the
right

turns off teletype

feeds paper to permit
tearing off.

turns off buzzer, which
signals low paper supply,

If the teletype is on a direct line to the computer,
pushing the ORIG button is all that is necessary to connect
up with the computer. To disconnect from the computer,
type G00DBYE or BYE. If that fails, push CLR.

. .

.

FROM "LONG" DISTANCE TELETYPES :

Some teletypes utilize telephone company lines through
dataphone facilities to make connection with the
computer. Besides the buttons described above, the
following buttons have additional functions.

BUTTON LOCATION FUNCTION

TEL

CLR

above telephone secures dial tone for
dial,

next to ORIG

L_.

the teletypes on a
call-up basis.

breaks telephone con-
nection as well as
disconnects the tele-
type from the computer,

In order to connect up with the computer from long
distance teletypes, follow this routine:

1. Push the TEL button and wait for dial tone.

-78-

2. Dial one of the dataphones at the Computation
Center.

3. When you hear a high-pitched tone, push the
ORIG button.

In order to disconnect from a long distance teletype,
type G00DBYE or BYE. If that fails, push CLR.

REQUIRED STATEMENTS AT SIGN-ON

Once the teletype is connected to the computer it will
start typing. Remember that all typed lines must be
followed by a carriage return (RETURN) . The machine
will ask for certain information which you will supply
by typing the information when asked for it, and
following each response with a carriage return.

First, it asks for the user's number, which is either
the six-digit student ID number, or a special number
assigned to the user by the Computation Center. Then
it will ask whether it is a new or old program you will
be working on. A new program is one which the user is
about to start on, while an old program has been saved
in memory for future use.
Finally, it will ask for the new or old problem name.
After the machine types READY the user may begin with
his new program or pick up where he left off on his old
program. A typical sequence follows. (The underline
indicates information typed by the user.)

USER NUMBER — 999999

NEW OR OLD — NEW

NEW PROBLEM NAME — M36-2

READY

.

CONTROL COMMANDS

There are a number of commands that may be given to the
computer by typing the command at the start of a new line
(no line number) and following the command with a carriage
return (RETURN)

.

COMMAND MEANING

CATAL0G The computer types a list of the
names of all programs currently
being saved by that user.

-79-

EDIT

HELL0

LENGTH

LIST

LIST—XXXXX

LISTNH

LISTNHXXXXX

NEW

0LD

See Appendix C

To be typed when a new user takes
over on a teletype that is already
connected.

Gives the user the length of the
program by printing the number of
characters. (Cf. Section 2.9)

Causes an up-to-date listing of the
program to be typed out.

Causes an up-to-date listing of the
program to be typed out beginning at
line number XXXXX and continuing to
the end.

Causes a listing of the program to
be typed out without a heading.

Causes a listing from line XXXXX
to be typed without a heading.

Erases the program currently being
worked on and asks for a NEW PR0BLEM
NAME.

Erases the program currently being
worked on and asks for an 0LD PR0BLEM
NAME.

RENAME

REPLACE

RUN

SAVE

SCRATCH

Permits you to change the problem
name of the program currently being
worked on, but does not destroy the
program.

Saves the current program and in
doing so erases a saved program of
the same name from memory.

Begins the computation of a program.

Saves the program intact for later use,
(To retrieve saved programs, type 0LD)

,

Destroys the problem currently being
worked on, but leaves the user number
and problem name intact. It gives
the user a "clean sheet" to work on.

-80-

STATUS Gives an indication of the status pf
the teletype machine you are using
(running, edit, idle)

.

ST0P Stops the computation at once. It
can be typed even when the teletype
is typing at full speed.

SYSTEM Permits the user to change systems
(BASIC, ALG0L, etc.)

TTY Supplies the following information:
Teletype number, user number, language
being used, program being used, and
status of teletype.

UNSAVE Erases a saved program from memory.
The memory of the computer is finite
and this command should be used to
free space in memory for programs of
other users.

TELETYPES WITH PAPER TAPE ATTACHMENTS

A program may be saved on paper tape very simply. Just
type LISTNH, and turn on the paper tape unit. This will output
the program on tape in a format suitable for reading into the
teletype at a later date. To reinput such a tape, two special
commands are needed. After typing NEW, and specifying the
name of the file, type TAPE, and turn on the tape unit. The
program will then be read into the computer. After turning
off the tape unit, type KEY to return control to the key-
board .

Appendix B — Library Files.

Programs which have been written and which are of interest
or use to others may be saved permanently in the computer in
such a way that they become available to all users. Programs
in this category are called library programs and are accessed
as in the following example:

NEW 0R 0LD — 0LD

0LD FILE NAME — BASICT***

The program name is BASICT and the three *'s inform the computer
to search for the file in the library. The library programs
are grouped by subject and a list of these groups may be
obtained by listing the library program DARTCAT***. More
detailed documentation on library programs may be obtained

-81-

from the librarian of the Computation Center.
Additions are made to the library from time to time;

thus programs which have been written and which are suitable
for inclusion in the library should be communicated to the
Kiewit Computation Center.

Appendix C — EDIT

There are several EDIT commands available to the user.
These enable the user to edit a program in certain ways or to
combine several programs in a number of different ways. The
EDIT commands available are listed with a short description
of each. Detailed information on EDIT commands is available
from the librarian of the Computation Center. This documentation
also indicates the current status of these commands.

EDIT RESEQUENCE

EDIT PAGE

EDIT DELETE

EDIT EXTRACT

EDIT LIST

EDIT WEAVE

EDIT APPEND

EDIT MERGE

EDIT M0VE

EDIT TRACE

EDIT RUN0FF

Renumbers the lines in the program.

Lists the program in a paged format.

Deletes lines or blocks of lines from
the program.

Extracts lines or blocks of lines from
the program.

Lists certain lines or blocks of
lines of the program.

Weaves two or more (up to nine) pro-
grams together, keeping line numbers
intact.

Appends a program at the end of
another one.

Inserts a program into another (main)
program at a specified line number
and resequences the whole if necessary.

Moves lines or blocks of lines to new
positions in the program.

Adds certain print statements to the
program and causes a RUN to be
performed.

Produces a neat paginated copy of
textual material without line numbers

.

For an explanation of a given command, type - for example -

EDIT EXPLAIN RESEQUENCE.

-82-

Appendix D — Program Names

As noted in Appendix B three *
' s at the end of a program

name indicate that you want a library program. Thus asterisks
should be avoided in program names.

The EDIT commands make use of commas and semi-colons and
may use / in their format (See Appendix C) . For this reason
programs which have these symbols in their name will not EDIT
successfully.

The following simple rule will provide safe names. In
naming a program, do not use the symbols: *

, ; / $.

Appendix E — Future Plans

At the time of writing many new features to improve the
system and make it even more useful are being developed. When
these features become available they will be fully documented
and a manual containing details will be published. A brief
description of each new feature follows:

(1.) Passwords

It is intended that users will be able to protect
their catalog with a password. In fact it will be impossible
to get "into" the machine using a user number protected by
a password without supplying the password on request.

Also available will be passwords for individual
programs. Thus if a program has been given a password it
will be impossible to access the program without supplying
the password. Giving the command CATAL0G will still only
cause a list of the names, and not the passwords, of the
programs saved, to be typed out.

(2.) Background BASIC

BASIC users having long-running programs, large
amounts of data, or large amounts of output will be able
to request a background run of their problem. Background
BASIC will provide for using the card-reader for input
of data and the high speed printer for outputting results,
as well as use of tapes.

(3.) Data Files

„^. Data
.

fi;
!-f

s
"J

11 allow users to save results of comp-utations inside the computer. P

(i) Numerical data files will consist of a list of

-83-

numbers (in binary notation) . It is not intended that
these files be created directly from the teletype but by
means of a WRITE instruction in BASIC.

BASIC will access these files by means of READ
instructions and so may be listed through a user program
using PRINT.

It will be necessary to declare the files to be read
with a FILES command in BASIC before any use is made of the
files. This will establish the files to be used initially
and will save space for them. It wil] be possible to keep
track of the number of numbers read from a file and to keep
track of how many numbers there are in the file. It will
also be possible to REST0RE all the data files being used
or just one at a time if required. In fact, it will also
be possible to REST0RE a file to a particular position
rather than to the beginning of the file.

(ii) Data files will also be avilable for strings -

it will be required that the name of a string file end with
$ as a protection for the user. Most of the comments above
are applicable to string files.

'

r

(iii) It will also be possible to create teletype-
format files. The purpose ot these is to be able to save
DATA separately from the program, but to be able to list
or modify it from the teletype. BASIC will treat these
files as if they were INPUT from a teletype.

It should he pointed out that teletype files will be
somewhat more difficult to manipulate than numeric or string
files. However, they will allow mixed numerical and string
data, and it will be possible to list or modify them directly
from a teletype.'

(4.) Chaining of Programs

This feature will allow one program to initiate a RUN on
another program without the two programs communicating directly.
However, the first program could write into a data file
which the second will read.

(5.) Segmenting Programs

This feature will allow the writing of a long program in
several independent segments, which will fully communicate,
and which may be debugged separately. It will also allow
multiple use of segments, e.g. the use of a library sub-
routine as a segment.

The advantages of this will be better service from
the machine, since small programs can get scheduled sooner,
and easier debugging since it is much easier to debug a
short program than a long one.

(6.) Multiple Teletype Connections

-84-

an, .

Zt wi
i
X

^
e Possible for one teletype to be the "master"and to control several other "slave" teletypes to a nSf»?«

tulT-* ?
he

.

slave teletypes will be 11^^^^^ tosupply data in response to an INPUT. The "master" tll^vL
win be let

°nly0ne able t0 give -ystemco^nds. T^e^nkagewill be set up via user numbers and will require a Do2?*ti«action from all the terminals concerned.
reqUire a P^sitxve

» «™ T?
iS feature wil1 al low controlled experiments with

(7.) Saving of Compiled Programs

At the present time saved programs are re-comni i«rievery time they are RUN. This is wastJfSl of machinetime and so it is intended that the instructs
0LD

0LD FILE NAME — ABC

READY

C0MPILE GHI

will cause ABC to be compiled, but not executed T f *h«

SB IB.™- -~-^- lv>t>

-85-

